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Abstract
We propose a simple model for the phenomenon of Eulerian spontaneous stochasticity
in turbulence. This model is solved rigorously, proving that infinitesimal small-scale
noise in otherwise a deterministic multi-scale system yields a large-scale stochastic
process with Markovian properties. Our model shares intriguing properties with open
problems of modern mathematical theory of turbulence, such as non-uniqueness of
the inviscid limit, existence of wild weak solutions and explosive effect of random
perturbations. Thereby, it proposes rigorous, often counterintuitive answers to these
questions.Besides its theoretical value, ourmodel opens newways for the experimental
verification of spontaneous stochasticity, and suggests new applications beyond fluid
dynamics.

Keywords Dynamical Systems · Fluid Dynamics · Arnold Cat

1 Introduction

Scaling symmetries of space and time shape themodern theory of developed turbulence
[17], which assumes that equations of motion for a velocity field u(r, t) are invariant
with respect to the scaling transformations:

t, r,u �→ λ1−ht, λr, λhu (1)

for arbitrary λ > 0 and h ∈ R. Notice that this property refers to a wide (so-called
inertial) interval of scales, at which both the forcing and viscous terms are negligible.
Multi-scale systems of this kind may possess a fascinating property of spontaneous
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stochasticity: a small-scale initial uncertainty develops into a randomly chosen large-
scale state in a finite time, and this behavior is not sensitive to the nature andmagnitude
of uncertainty [5, 13, 15, 21, 22, 29, 30, 32].

A simpler form of this phenomenon is the Lagrangian spontaneous stochasticity
(LSS) of particle trajectories in a turbulent (non-differentiable) velocity field, also
known as the Richardson super-diffusion [15, 17]: two particles diverge to distant ran-
dom states in finite time independently of their initial separation. Another intriguing
form is the Eulerian spontaneous stochasticity (ESS) of the velocity field itself: an
infinitesimal small-scale noise triggers stochastic evolution of velocity field at finite
scales and times. The consequences are both theoretical, revising the role of stochas-
ticity in multi-scale classical systems, and practical, e.g., its implications for weather
prediction [27, 28]. The ESS suggests a potentially new path for understanding the
inviscid limit in the developed (Navier–Stokes) turbulence, which copeswith a number
of paradoxes, such as the recently discovered wild and non-unique dissipative weak
solutions; see, e.g., [6, 7]. Unlike the LSS, which can been studied in various models
[3, 8–10, 12, 14, 19], the current knowledge on the ESS is mostly limited to numerical
simulations [4, 16, 24, 25, 29, 32]. A rigorous theory of ESS remains elusive due to
its sophisticated (infinite-dimensional) character.

In this paper, we propose an artificial model, which is constructed as an infinite-
dimensional extension of the (hyperbolic) Arnold’s cat map [1] and yields a rigorously
solvable example of ESS. This model is a formally deterministic systemwith a scaling
symmetry, which possesses non-unique (uncountably many) solutions, including ana-
logues of wild solutions known for the Euler equations of incompressible ideal fluid
[6]. However, solutions are made unique by introducing a viscous-like regularization.
By mimicking the Navier–Stokes turbulence [2], we study the inviscid limit and we
prove that it exists for subsequences, but yields uncountably many limiting solutions
depending on a chosen subsequence. Then, we prove that adding a random pertur-
bation as a part of the regularization yields a unique inviscid limit in the stochastic
sense, i.e., it yields a unique and universal probability measure solving the original
formally deterministic system with deterministic initial conditions. This probability
measure defines a stochastic process with Markovian properties, and its universality
means that it does not depend on a specific form of a random perturbation. The coun-
terintuitive property of this spontaneously stochastic solution is that it assigns equal
probability (uniform probability density) to all non-unique solutions. The rigorous
answers produced by our model shed light on new ways of understanding the problem
of non-uniqueness in the developing mathematical theory of turbulence [7].

The paper has the following structure. Section 2 introduces the model and describes
basic properties of non-unique solutions. Section 3 defines regularized solutions and
studies non-unique inviscid (subsequence) limits. Section 4 introduces random reg-
ularization and formulates our main result on the existence and uniqueness of a
spontaneously stochastic solution, which is proved in Sect. 5. Section 6 investigates the
convergence issues and presents results of numerical simulations. Further applications
of obtained results are discussed in Sect. 7.
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2 Model

We consider variables un(t) depending on time t and integer indices n ∈ Z
+ =

{0, 1, 2, . . .}. One can see these variables as describing a multi-scale system with a
geometric sequence of spatial scales �n = λ−n for some λ > 0. In this case, the
discrete analogue of scaling symmetry (1) with h = 0 becomes

t, un �→ λt, un+1, (2)

where the index shift n �→ n + 1 reflects the spatial scaling relation �n = λ�n+1.
Notice that (2) is the symmetry of the Euler equations for incompressible ideal fluid,
in which case the variable un can be introduced by low/high-pass filters or wavelet
transforms of the velocity field in the range of scales between �n and �n+1 [17].

We construct an artificial model with symmetry (2) by setting λ = 2 and defining
variables un(t) on the two-dimensional torus T2 = R

2/Z2 at discrete times:

t ∈ τnZ
+ = {0, τn, 2τn, . . .}, τn = 2−n, (3)

where τn is interpreted as the “turn-over” time at scale �n . As shown in Fig. 1, all
scales and corresponding times define the self-similar lattice:

L = {(n, t) : n ∈ Z
+, t ∈ τnZ

+}. (4)

Our model is defined by the deterministic relation:

un(t + τn) = Aun(t) + Aun+1(t) mod 1, (5)

where the symmetric 2 × 2 matrix A defines the Arnold’s cat map [1]:

A : (x, y) �→ (2x + y, x + y) mod 1, (x, y) ∈ T
2. (6)

Relation (5) defines evolution at scale �n over a single turn-over time τn . Here we
limited the inter-scale couplings to the same and smaller scales, �n and �n+1, and
took advantage that the map A is a linear, hyperbolic, invertible and area-preserving.
These properties greatly facilitate analysis of the model, and we discuss further gen-
eralizations later. Relation (5) is invariant with respect to the scaling symmetry (2).
The resulting structure of whole system is presented schematically in Fig. 1.

We assume an arbitrary deterministic initial condition:

un(0) = u0n, n ∈ Z
+. (7)

We say that the infinite sequence (un(t))(n,t)∈L is a solution of the initial value problem,
if it satisfies relations (5)–(7) for all (n, t) ∈ L. For describing all solutions, we split
the lattice, L = I ∪ G ∪ R ∪ B, as shown in Fig. 1. Here I = {

(n, 0) : n ∈ Z
+}

are
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342 A. A. Mailybaev, A. Raibekas

Fig. 1 Structure of the multi-scale map for the variables un(t) corresponding to scales �n and discrete times
t ∈ τnZ

+. Gray arrows represent the Arnold’s cat map (shown on the top of the figure), which appear in the
coupling relation (5) and correspond to one turn-over time τn . White circles correspond to initial conditions.
Green (G), red (R) and small black (B) circles denote, respectively, the next-time variables, the variables
taking arbitrary values in Proposition 1, and the remaining variables

indices of initial conditions and G = {
(n, τn) : n ∈ Z

+}
of the next-time variables.

The remaining sets of indices are defined as

B = {(n + 1, (2 j + 2)τn+1) : n, j ∈ Z
+}, (8)

R = {(0, j + 2) : j ∈ Z
+} ∪ {(n + 1, (2 j + 3)τn+1) : n, j ∈ Z

+}. (9)

Proposition 1 For any given initial condition (7), there is uncountable number of
solutions of system (5). Each solution is determined by initial conditions un(t) ∈ T

2

for (n, t) ∈ I and arbitrary values un(t) ∈ T
2 for (n, t) ∈ R, in which case the

remaining variables with (n, t) ∈ G ∪ B are defined uniquely.

Proof Let us write Eq. (5) as

un+1(t) = A−1un(t + τn) − un(t) mod 1. (10)

Then, given arbitrary N ∈ Z
+ and inspecting Fig. 1, one can verify that all variables

un(t) with n ≤ N and (n, t) ∈ G ∪ B are uniquely defined by the initial conditions at
(n, t) ∈ I and the variables with n < N and (n, t) ∈ R. Hence, all equations (5) and
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Fig. 2 Examples of wild solutions with the compact support in time: all variables vanish for t ≤ 1 and
t ≥ 4. Here all white circles correspond to zero variables and red circles denote arbitrary nonzero variables,
which uniquely define the variables denoted by small black circles

initial conditions (7) are satisfied for arbitrary un(t) ∈ T
2 at (n, t) ∈ R and uniquely

defined variables at (n, t) ∈ G ∪ B. �	
We notice that solutions of Proposition 1 include analogues of the so-called wild

weak solutions for Euler equations in fluid dynamics [6]. These are unphysical solu-
tions with a finite support in time, i.e., nonzero for t ∈ (t1, t2) but vanishing both
for t ≤ t1 and t ≥ t2. Such solutions are constructed in our model by choosing
the variables with (n, t) ∈ R to be zero for times t /∈ (t1 + 1, t2) and nonzero for
t ∈ (t1 + 1, t2), where t1 and t2 are arbitrary positive integers. One can show using
Proposition 1 and relation (10) that this yields uncountably many wild solutions; see
Fig. 2.

3 Regularized Solutions

Introducing a regularized system is a conventional way for dealing with non-
uniqueness. For any integer N ≥ 1, we define the N -regularized system for the
finite number of variables u1(t), . . . , uN (t) by setting the remaining variables to zero:
un(t) ≡ (0, 0) for n > N . Thus, the set of variables reduces to (un(t))(n,t)∈LN , where
LN = {

(n, t) : n ∈ {0, . . . , N }, t ∈ τnZ
+}

is the truncated lattice. Equations of the
N -regularized system are given by (5) for n < N with the equation for n = N reduced
to the form un(t + τn) = Aun(t). The initial conditions are defined by relations (7)
limited to the scales n ≤ N . This truncation resembles the viscous regularization in
fluid dynamics, where the viscous term of the Navier–Stokes equations suppresses the
turbulent motion below a certain (so-called Kolmogorov) microscale η ∼ �N [17].

One can easily see from Fig. 1 that N -regularized solutions, which we denote
by u(N )

n (t), are uniquely defined by the initial conditions. One can always choose a
subsequence N1 < N2 < · · · such that the N -regularized solutions converge for all n
and t (see [11, Theorem 3.10.35]):
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344 A. A. Mailybaev, A. Raibekas

un(t) = lim
i→∞ u(Ni )

n (t), (11)

where un(t) is some solution from Proposition 1. For example, for vanishing initial
conditions, this limit yields the vanishing solution at all times t ≥ 0, therefore, ruling
out all wild solutions mentioned above.

Similar to turbulencemodels [23], solutions obtained in the regularization limit (11)
are non-unique in general, because different subsequences yield different solutions:

Proposition 2 Consider the initial condition (7) with all variables equal to the same
value u0n = a. Then, for almost every choice of a ∈ T

2, there exist infinite
(uncountable) number of different solutions obtained as subsequence limits (11) of
N-regularized systems.

Proof Let us focus on the specific variable u(N )
0 (2). By induction with relation (5)

represented by gray arrows in Fig. 1, one can verify the formula:

u(N )
0 (2) = A2u00 + (A + A2)

N∑

n=1

Anu0n mod 1. (12)

Taking into account that all initial values are equal to a, and
∑N

n=1 A
n = (A −

I )−1(AN+1 − A) with the identity map I , one reduces (12) to the form:

u(N )
0 (2) = (A2 − B)a + BANa mod 1, (13)

where B = A2(I + A)(A − I )−1 is a nonsingular matrix with integer components.
The ergodicity of theArnold’sCatmap implies that the sequence ANawith N ∈ Z

+
is dense on the torus for almost every a ∈ T

2. Let us consider such a, an arbitrary
c ∈ T

2 and define b ∈ T
2 such that (A2 − B)a + Bb = c. Since ANa is a dense orbit,

we can choose an infinite subsequence Ni such that ANi a → b as Ni → ∞. Then,
expression (13) yields

lim
i→∞ u(Ni )

0 (2) = c. (14)

Similar to (11) we can take a subsequence Nik within the sequence Ni , so that u
(Nik )
n (t)

converges to a solution un(t) for all n and t . In particular, this implies that u0(2) = c for
arbitrary c ∈ T

2, providing uncountable number of limits for the regularized system.
�	

Proposition 2 shows that the regularization does not serve as a proper selection cri-
terion among infinitely many solutions given by Proposition 1. As we show in the next
section, there is a deep reason for this failure of the regularization strategy. Contrary
to the common intuition, all solutions of Proposition 1 become equally relevant when
the stochastic form of regularization is considered.
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4 Spontaneously Stochastic Solution

Let us modify the definition of N -regularized solution by adding a random small-scale
perturbation. For simplicity, we consider a single random number ξ ∈ T

2 added to
the initial value at the cutoff scale n = N as

u(N )
N (0) = u0N + ξ, (15)

with ξ having a Lebesgue integrable probability density ρ(ξ). This formulation is not
only technically convenient, but also highlights an exceptional role of even a single
source of randomness at small scales. Generalization to multiple random sources is
rather straightforward.

Let us consider the mapping

(
u00, . . . , u

0
N

)
�→

(
u(N )
n (t)

)

(n,t)∈L (16)

relating deterministic initial conditions with deterministic N -regularized solutions;
recall that u(N )

n (t) ≡ 0 for n > N . For the new random initial condition (15), we
introduce the full vector of initial states as

(ζ0, . . . , ζN ) =
(
u00, . . . , u

0
N−1, u

0
N + ξ

)
∈ T

2(N+1), (17)

and define the corresponding probability measure as

dμ
(N )
ini =

(
N−1∏

n=0

δ(ζn − u0N )dζn

)

ρ(ζN − u0N )dζN . (18)

This measure is a product of Dirac delta functions on the torus T2 for the first N
components and the shifted density ρ(ξ) for the last component. We denote by μ(N )

the corresponding probability measure of N -regularized solutions, which is naturally
obtained as the image (push-forward) of μ

(N )
ini by the mapping (16).

Let us consider the standard product topology on the latticeL and Borel probability
measures endowed with the weak-convergence topology; see, e.g., [31]. We say that
the original problem (5)–(7) has a spontaneously stochastic solution described by a
non-trivial measure μ, if it is obtained as the limit:

μ = lim
N→∞ μ(N ), (19)

in which the regularization is removed. Now we can formulate our main result as

Theorem 1 Problem (5)–(7) has a spontaneously stochastic solution given by the
probability measure μ specified below by Eqs. (20)–(24). This measure is universal,
i.e., independent of the small-scale perturbation ξ .
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We postpone the proof for the next section, and now describe the measure μ. This
measure is composed as a product of four pieces. The first two are the probability
measures μI and μG corresponding, respectively, to deterministic initial conditions
(7) and the next-time variables un(τn) given uniquely by relation (5):

dμI =
∏

n∈Z+
δ
(
un(0) − u0n

)
dun(0), (20)

dμG =
∏

n∈Z+
δ
(
un(τn) − Au0n − Au0n+1

)
dun(τn). (21)

Here dun(t) defines the Lebesgue (uniform) probability measure onT2 corresponding
to a specific variable un(t). The third piece is given by the measure:

dμR =
∏

(n,t)∈R
dun(t), (22)

which describes a random uniform choice of variables un(t) from the red set R; see
Fig. 1. The last piece ensures that all relations (5) are satisfied for t > τn . These
relations are verified at points of the black set B using Eq. (5) transformed to form
un(t) = A−1un−1(t + τn−1) − un−1(t); see Fig. 1. Therefore, we define

dμB =
∏

(n,t)∈B
δ
(
un(t) + un−1(t) − A−1un−1(t + τn−1)

)
dun(t). (23)

The probability measure μ is given by the product:

dμ = dμI dμG dμR dμB. (24)

It is remarkable that the spontaneously stochastic solutionμ assigns equal probabil-
ity (uniform distribution) to all solutions of Proposition 1 independently of the random
perturbation ξ . One can see, however, that the probability measure corresponding to
a set of wild solutions discussed above is zero.

Let us consider evolution of the spontaneously stochastic solution μ by focusing
on integer times. At each t ∈ Z

+, the solution defines a probability measure μt on the
infinite-dimensional space of variables u(t) = (u0(t), u1(t), u2(t), . . .). For example,
projecting the measure (20)–(24) at t = 1, we have

dμ1 = δ
(
u0(1) − Au00 − Au01

) ∏

n∈Z+
dun(1), (25)

where u0(1) is deterministic and un(1) with n ≥ 1 are random (independent and
uniformly distributed). Measure (25) defines a Markov kernel: given a specific initial
state u(0) it yields the probability distribution for u(1). Hence, the dynamics of our
model at integer times represents a Markov process. In our example, μt converges at
t ≥ 2 to the equilibrium state μt ≡ μeq, which is the uniform (Haar) measure on T∞.
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As discussed in a different example later on, the convergence of μt as t → ∞ does
not always occur in a finite time.

By inspecting the proofs of Propositions 1 and 2 and of Theorem 1 one can gener-
alize our results as follows.

Corollary 1 Let us consider a larger class of models given by relation (5), where A
is an arbitrary m × m matrix with integer elements and det A = 1, thus defining
an automorphism of the m-dimensional torus Tm. Proposition 1 remains valid with
no additional hypothesis. Proposition 2 is valid if we assume that A does not possess
eigenvalues which are roots of unity, in which case the induced automorphism ofTm is
ergodic [26]. Finally, Theorem 1 remains valid under the two additional assumptions:

(i) The dominant (maximum absolute value) eigenvalue λ of A is simple and greater
than 1.

(ii) Let v = (v1, . . . , vm) be the eigenvector corresponding to λ for the transposed
matrix AT . Then the numbers v1, . . . , vm and 1 are rationally independent.

5 Proof of Theorem 1

The weak convergence of measures μ(N ) → μ in the product topology [31] follows
from the followingproperty,which describes the convergence for all finite-dimensional
projections.

Lemma 1 Let (un(t))(n,t)∈S ∈ T
2d be any finite set of variables indexed by S =

{(ni , ti ) : i = 1, . . . , d} ⊂ L. Let μS and μ
(N )

S be the corresponding probability
measures obtained by projecting the measure μ from (20)–(24) and the stochastically
regularized measure μ(N ). Then

lim
N→∞

∫
ϕ dμ

(N )

S =
∫

ϕ dμS (26)

for any continuous observable ϕ : T2d �→ R.

Proof First, we express explicitly an arbitrary variable un(t) in terms of initial condi-
tions u0n and the random quantity ξ of the stochastically N -regularized problem. For

this purpose, we use the polynomials P(N )
n,t defined as

P(N )
n,t (x) =

∑

all paths p from
(N ,0) to (n,t)

x |p|, (27)

where the sum is taken over all paths following grey (right or up-right diagonal) arrows
in Fig. 1, which connect (N , 0) to (n, t), and |p| denotes the number of arrows in the
path. Using iteratively the linear relation (5) with the truncation property un(t) = 0
for n > N and the initial conditions (7) and (15), one can check that
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u(N )
n (t) = P(N )

n,t (A)ξ + a(N )
n,t mod 1, a(N )

n,t =
N∑

k=n

P(k)
n,t (A)u0k, (28)

where a(N )
n,t ∈ T

2 denotes the contribution from deterministic initial conditions.

The probability measure μ
(N )

S corresponding to a finite set of random variables(
u(N )
n (t)

)

(n,t)∈S ∈ T
2d is obtained using relation (28) as

dμ
(N )

S =
∫

⎛

⎝
∏

(n,t)∈S
δ
(
u(N )
n (t) − P(N )

n,t (A)ξ − a(N )
n,t

)
du(N )

n (t)

⎞

⎠ ρ(ξ) dξ, (29)

where du(N )
n (t) denotes the Lebesgue (uniform) probability measure on T

2 corre-
sponding to a specific variable u(N )

n (t), and ρ : T2 �→ R
+ is a measurable probability

density for the random number ξ .
Now let us analyse an arbitrary set S. It is enough to consider S = Ln,t in the

rectangular region:

Ln,t = {
(n′, t ′) : n′ ≤ n, t ′ ≤ t

}
(30)

for any integer n and t . Both measures μ and μ(N ) are supported on the linear sub-
space determined by relations (5). Specifically, according to Proposition 1 and Fig. 1,
variables at white nodes correspond to initial conditions, variables at green nodes are
determined by initial conditions only, and variables at black nodes are given by initial
conditions and by variables at red nodes of the set R. These relations do not depend
on N . Hence, for both projected measures μS and μ

(N )

S with S = Ln,t , relations
(5) define variables un′(t ′) from S in terms of initial conditions and variables from
Ln,t ∩ R. From this property, one can infer that the relation (26) can be verified for
smaller sets of the form:

S = Ln,t ∩ R, (31)

in which we ignored the remaining deterministic variables.
Projecting themeasureμ from (20)–(24) on the subspace given by (31), one obtains

that μS is the Lebesgue measure in T
2d . Then, the integral in the right-hand side of

(26) reduces to the mean value of the observable:

lim
N→∞

∫
ϕ dμ

(N )

S =
∫

ϕ(w) d2dw, (32)

where w = (
wn,t

)
(n,t)∈S ∈ T

2d denotes the vector of variables indexed by S, with
wn,t = u(N )

n (t) in the integral on the left-hand side. Let is consider the Fourier expan-
sion:
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ϕ(w) =
∑

k∈(2πZ)2d

ϕk exp(ik · w), (33)

where we introduced the wavevector k = (
kn,t

)
(n,t)∈S ∈ (2πZ)2d ; the dot denotes

the scalar product. Using (33) in relation (32), the constant term ϕ0 compensates the
integral in the right-hand side since ϕ0 = ∫

ϕ d2dw. Therefore, it remains to show
that

lim
N→∞

∫
exp(ik · w) dμ

(N )

S = 0 (34)

for any nonzero wavevector k. Using (29) with the property kn,t ∈ (2πZ)2 and sym-
metry of the matrix A, we have

∫
exp(ik · w) dμ

(N )

S = exp
(
ia(N )

k

) ∫
exp

(
i A(N )

k · ξ
)

ρ(ξ)dξ, (35)

where we introduced the scalar a(N )
k ∈ R and the vector A(N )

k ∈ R
2 as

a(N )
k =

∑

(n,t)∈S
kn,t · a(N )

n,t , A(N )
k =

∑

(n,t)∈S
P(N )
n,t (A)kn,t . (36)

Notice that the integral in the right-hand side of (35) represents the Fourier coefficient
of ρ(ξ) of order −A(N )

k . By the Riemann–Lebesgue lemma the high-order Fourier
coefficients of the function ρ(ξ) converge to zero. Therefore, to conclude the proof it
is enough to show that ‖A(N )

k ‖ → ∞ as N → ∞ for any fixed nonzero wavevector
k ∈ (2πZ)2d .

Using the eigenvalue decomposition of the Arnold’s cat map (6), we can write [1]

P(N )
n,t (A) = P(N )

n,t (α)A1 + P(N )
n,t (α−1)A2, (37)

where α = (3+√
5)/2 and α−1 are eigenvalues of A, and the symmetric matrices A1

and A2 are given by the linear maps:

A1 : (x, y) �→
(

αx+(α−1)y
α+1 ,

(α−1)x+y
α+1

)
, A2 : (x, y) �→

(
x+(1−α)y

α+1 ,
(1−α)x+αy

α+1

)
.

(38)

Substituting (37) into the second expression of (36) yields

A(N )
k =

∑

(n,t)∈S

[
P(N )
n,t (α)A1kn,t + P(N )

n,t (α−1)A2kn,t

]
. (39)
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Since P(N )
n,t defined in (27) is a polynomial with positive coefficients and α > 1, we

have

lim
N→∞

P(N )
n,t (α)

P(N )
n,t (α−1)

= ∞. (40)

Using Lemma 2 formulated and proved below, we can order the elements in S =
{(ni , ti ) : i = 1, . . . , d} such that

lim
N→∞

P(N )
ni+1,ti+1

(α)

P(N )
ni ,ti (α)

= ∞, i = 1, . . . , d − 1. (41)

Notice that A1kn,t = 1
α+1

(
α α−1
α−1 1

)
kn,t following from (38), where α = (3+√

5)/2
is the irrational number. Since the wavevector kn,t/(2π) ∈ Z

2 has integer components,
A1kn,t is nonzero if kn,t is nonzero. Therefore, using properties (40) and (41) in
expression (39), one can see that themagnitude of A(N )

k is dominated by the polynomial

P(N )
ni ,ti (α)with the largest i such that kni ,ti is nonzero. Since P

(N )
ni ,ti (α) → ∞ as N → ∞,

we prove the desired property that ‖A(N )
k ‖ → ∞ as N → ∞. �	

Lemma 2 Elements (n j , t j ), j = 1, . . . , d of any finite subset S ⊂ R can be ordered
such that (41) holds.

Proof Observe that the condition (n, t) ∈ R with n ≤ N ensures that P(N )
n,t (x) from

(27) is nonzero for any x > 0; see Fig. 1. For any path p from (N , 0) to (n, t) in
(27), one constructs a new path p′ from (N , 0) to (n + 1, t), as shown in Fig. 3a:
removing the final segments at scale n, shifting the remaining part to the right, and
adding extra segments at scale N . In this procedure, each removed segment yields the
τn/τN = 2N−n added segments. This means that

lim
N→∞

P(N )
n+1,t (x)

P(N )
n,t (x)

= ∞, (42)

where we assumed an arbitrarily chosen number x > 1. Notice that the definition (27)
implies

P(N )
n,t (x) = x P(N )

n,t−τn
(x) + x P(N )

n+1,t−τn
(x), (43)

where the last two terms correspond to the paths ending, respectively, with the hori-
zontal and diagonal arrows (Fig. 1). Using (42) in (43), we have

lim
N→∞

P(N )
n,t (x)

P(N )
n+1,t−τn

(x)
= x . (44)
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Fig. 3 a Every path connecting (N , 0) to (n, t) defines the path connecting (N , 0) to (n + 1, t) through the
following surgery procedure. The upper (red) part of the path is removed and the remaining (green) part
is shifted to the left. Then, the lower (red) part is added to complete the new path. b Black lines connect
nodes (n′, t ′) related by Eq. (45), where (n, t) are taken at red points. Polynomials on the same line have
finite (nonzero and non-infinite) ratios in the limit N → ∞. c The path connecting (N , 0) to (n, t) with the
largest number of segments
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Iterating this relation yields

lim
N→∞

P(N )
n,t (x)

P(N )

n′,t ′(x)
= xn

′−n for n′ > n, t ′ = t −
n′−1∑

j=n

τ j . (45)

When (n, t) ∈ R, the points (n′, t ′) from (45) belong to a descending diagonal line,
as shown in Fig. 3b. Inspecting these diagonal lines and using the property (42), one
can deduce that

lim
N→∞

P(N )
n2,t2(x)

P(N )
n1,t1(x)

= ∞ (46)

for any distinct elements (n1, t1) and (n2, t2) of the setR. Here the indices are chosen
such that the black line starting at (n2, t2) is located to the right of the line starting
at (n1, t1); see Fig. 3b. In particular, this implies that any finite subset of elements
(n j , t j ) ∈ R can be ordered satisfying the properties (41). �	

6 Convergence Rate

Wenow address practical aspects of convergence: how small can be the random pertur-
bation ξ and how largemust be the number of scales N for observing the spontaneously
stochastic solution with a given variable un(t)?

Relations (28) and (37) in the proof of Theorem 1 with the limit (40) indicate
that the convergence to the spontaneously stochastic limit for each variable u(N )

n (t) is
controlled by the factor:

P(N )
n,t (α) =

∑

all paths p from
(N ,0) to (n,t)

α|p|. (47)

Here α = 1
2 (3+√

5) ≈ 2.618 and the sum is taken over all paths following grey (right
or up-right diagonal) arrows in Fig. 1, which connect (N , 0) to (n, t); |p| denotes the
number of arrows along the path. The factor (47) amplifies the random perturbation
induced by ξ in the variable u(N )

n (t). Let us assume that ξ takes small random values
of order ε and has a sufficiently regular probability density (e.g., Holder continuous).
Hence, for observing spontaneous stochasticity at node (n, t), the corresponding error
must become large: P(N )

n,t (α)ε � 1. This yields the condition:

P(N )
n,t (α) � 1/ε. (48)

We now verify how fast P(N )
n,t (α) grows with N . For this purpose, we compute the

longest path (dominant term) in expression (47). This path contains the maximum
number of arrows at the smallest scale �N , supplemented with N − n diagonal arrows

123



Spontaneously Stochastic... 353

(one at every scale) to reach the node (n, t); see Fig. 3c. The number of arrows at
scale N is evaluated as (t − �t)/τN , where τN = 2−N is the turn-over time for each
arrow and �t is the time interval occupied by the diagonal arrows at larger scales.
This interval is evaluated as

�t =
N−1∑

j=n

τ j =
N−1∑

j=n

2− j = 21−n − 21−N = 2τn − 2τN . (49)

Therefore, the total number of arrows in the path is found as

|p| = t − �t

τN
+ N − n = t − 2τn

τN
+ 2 + N − n = 2N (t − 2τn) + N − n + 2.

(50)

Using the longest path (50) in expression (47), yields the lower-bound estimate as

P(N )
n,t (α) ≥ αb, b = 2N (t − 2τn) + N − n + 2. (51)

This expression suggests that the time t = 2τn is transitional: the factor P
(N )
n,t (α) ∝ αN

grows exponentially in N at t ∼ 2τn , while the growth becomes double-exponential

with P(N )
n,t (α) ∝ (

αt−2τn
)2N

at larger times.

To be more specific, we computed the values of P(N )
n,t (α) numerically using for-

mula (47) and presented the results graphically in Fig. 4. One observes that, in the
model with only N = 7 scales and utterly small noise of amplitude ε ∼ 10−50, the
spontaneously stochastic behaviour develops for all variables lying to the right of the
transitional (red/yellow) region. Therefore, systems with a moderate number of scales
N must demonstrate the spontaneously stochastic behaviour even for extremely small
random perturbations. However, larger perturbations are required for convergence in
the transitional region. This result is tested numerically in Fig. 5a, b.

7 Discussion

We designed a simple model that demonstrates the Eulerian spontaneous stochas-
ticity (ESS): It is a formally deterministic scale-invariant system with deterministic
initial conditions, which has uncountably many non-unique solutions and yields a
universal stochastic process when regularized with a small-scale infinitesimal random
perturbation. Our work provides the rigorous study of this system proving the exis-
tence of spontaneously stochastic solution as well as its universality (independence
of the vanishing regularization term). The exceptional and counterintuitive property
of this solution is that it assigns equal probability (uniform probability density) to
all non-unique solutions. At integer times, the solution represents a Markov process
converging to the equilibrium (uniform) state.

Our results can be extended to other forms of random regularization, e.g., random
variables depending on N or random perturbations added to all variables (noise). In
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Fig. 4 Amplification factor P(N )
n,t (α) of the initial error evaluated at each point of the lattice in a systemwith

N = 7 scales. The color of each rectangle shows (in logarithmic scale) the value of P(N )
n,t (α) corresponding

to the node (n, t) located in the upper left corner of the rectangle; zero values are shown by white color

addition, one can use this idea for designing spontaneously stochastic systems with
different behaviors by modifying the couplings or imposing extra conditions, such as
conserved quantities. For example, Fig. 5c shows the numerical results when Eq. (5)
is replaced by

un(t + τn) = Aun(t) + 0.1 (cos xn+1(t), cos yn+1(t)) , (52)

where un+1(t) = (xn+1(t), yn+1(t)) /2π ∈ T
2. We see that model (52) yields a more

sophisticated spontaneously stochastic solution. The rigorous study of such systems is
challenging, leaving important theoretical questions for future study: how to analyse
the existence, universality and robustness of spontaneously stochastic solutions in
more general multi-scale models?

Our model can used as a prototype for a (first) experimental observation of the
ESS implemented in a physical system, e.g., an optical or electric circuit. In this
experiment, arrows in Fig. 1 represent waveguides, and coupling nodes are identi-
cal signal-processing gates. The scaling symmetry is maintained by choosing lengths
of connecting waveguides proportional to turn-over times τn , exploiting the property
that a distance travelled by a signal is proportional to time. The variables un(t) can
describe phases of propagating signals measured at each node, while the initial condi-
tions are associated with the input signal. A challenge of this setup is in reproducing
the coupling relation (5) or a similar one that leads to the spontaneous stochastic-
ity. Notice that the intrinsic hyperbolicity of Arnold’s cat map can also be recreated
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Fig. 5 Each rectangle shows the probability density functions (darker colors correspond to higher prob-
abilities) for the variable un(t) ∈ T

2 corresponding to the upper left corner of the rectangle. Only the
scales n = 0, 1, 2 are demonstrated. The results are obtained by simulating numerically 108 samples of the
systemwith the initial conditions un(0) = (0.7, 0.5) for n = 0, . . . , N and the random variable ξ uniformly
distributed in the interval [0, ε]: a N = 7 and ε = 10−10, and b N = 9 and ε = 10−1. Bold red borders
designate variables in the transitional region, t ∼ 2τn , where the convergence is only exponential in N and
is not attained for very small ε. The last panel c shows analogous results for N = 9 and ε = 10−10 in
modified system (52)

in a simple mechanical system [18, 20]. The extremely fast convergence, which is
double-exponential in a number of scales, suggests that the spontaneous stochasticity
in the described experiment will be triggered by a natural microscopic noise from the
environment already in systems of moderate size, e.g., N = 7 from Fig. 4.

Finally, the proposed model suggests that applications and occurrence of the ESS
can be seen in a broader sense. This refers to multi-scale systems defined by determin-
istic rules but generating complex and genuinely stochastic processes. In real-world
systems, this stochasticity may be triggered by a natural microscopic noise. Confirm-
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ing ESS experimentally would imply that the occurrence of ESS should be studied in
a wide range of applications, e.g., hydrodynamic turbulence, random-number gener-
ation, neural networks in artificial intelligence or living organisms, etc.
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