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COHOMOLOGY OF SPACES OF COMPLEX KNOTS

V.A. VASSILIEV

Abstract. We develop a technique for calculating the cohomol-
ogy groups of spaces of complex parametric knots in Ck, k ≥ 3,
and obtain these groups of low dimensions.

1. Introduction

V.I. Arnold asked (see [3], Problem 1998-10) how to “complexify”
the theory of Vassiliev invariants. We propose here an answer to this
question by a straightforward extension of constructions from [11], [13]
to the case of complex parametric curves in affine spaces. Namely, we
describe a method of calculating the cohomology groups of spaces of
such curves that do have no cusps or self-intersections. For another
view of the Arnold’s problem (in the context of the “complexification”
of the Gauss linking number), see [8].

Let d be a natural number, and P (d, k) be the space of maps
C1 → Ck, k ≥ 3, defined by arbitrary k polynomials in variable z
of the form

(1) zd + λ1z
d−1 + · · ·+ λd−1z + λd,

λj ∈ C1. This space is obviously diffeomorphic to R2kd.
A map f : C1 → Ck of this type is called a complex knot of degree

d if it is a smooth embedding, i.e. has no self-intersections and no
points of vanishing derivative. The set of maps f ∈ P (d, k) that are
not complex knots is called the discriminant and is denoted by Σ.

Below we start computing the cohomology groups of the spaces
P (d, k) \ Σ for sufficiently large d using a simplicial resolution of
the discriminant space.

This method also allows us to prove the following stabilization the-
orem.
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Table 1

i 0 2k − 5 4k − 9 4k − 6 6k − 14 6k − 13 6k − 12
H i Z Z Z2 Z3 Z2 Z3 Z3 ⊕ Z

Theorem 1. For any natural numbers s and k ≥ 3, there is a
number dk(s) such that there are natural isomorphisms

(2) H i(P (d′, k) \ Σ) ≃ H i(P (dk(s), k) \ Σ)

for all d′ > dk(s) and any i ≤ s.

Thus, for any k ≥ 3 the stable cohomology ring of spaces P (d, k)\Σ
with d → ∞ is well defined. It is natural to consider it as the
cohomology ring of the space of complex knots in Ck. In contrast
to the real case, all its finite-dimensional elements are definitely of
finite type (while the analogous statement for real knots is an uncertain
conjecture).

Theorem 2. If d is sufficiently large and k > 3, then

(1) all non-trivial groups H i(P (d, k)\Σ,Z) with i ≤ 6k− 12 are
as shown in Table 1.

(2) rational homology groups H i(P (d, k) \Σ,Q) with i ≤ 8k− 17
are non-trivial only for i = 0, 2k − 5, 6k − 12, 6k − 9, and
8k − 17; for k > 4 these groups with i = 0, 2k − 5, 6k − 12
and 6k−9 are one-dimensional, while if k = 4 then 6k−9 =
8k − 17 and the corresponding group H15(P (d, 4) \ Σ,Q) is
at least two-dimensional.

If d is sufficiently large, then

(1) all non-trivial groups H i(P (d, 3) \ Σ,Z) with i ≤ 4 are
H0 ≃ H1 ≃ Z, H3 = H4 = Z2;

(2) all non-trivial groups H i(P (d, 3) \Σ,Q) with i ≤ 7 are H0,
H1, H6 and H7; the first three of them are one-dimensional.

1.1. Notation. For a topological space X, B(X, k) is its k-th con-
figuration space, i.e., the space of subsets of cardinality k in X with
a natural topology. ±Z is the sign local system of groups on the
space B(X, k): it is locally isomorphic to Z, but loops in B(X, k)
act on its fibers by multiplication by ±1 depending on the parity
of corresponding permutations of k points. H̄∗(X) denotes the
Borel–Moore homology group of the topological space X, that is, the
homology group of the complex of locally finite singular chains in X.
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1.2. Work plan. In §2 we introduce the main tool of the work, a spec-
tral sequence arising from the simplicial resolution of the discriminant
variety. Its construction almost repeats that which is systematically
used in [12]. Theorem 1 is proved in §3 using this spectral sequence.
In §4 a crucial technical tool of practical calculations is described: an
additional filtration on the resolution spaces, which simplifies the cal-
culation of the first page E1 of the main spectral sequence.

In §§5–7 we apply these techniques to find three first columns of
this page, which provide almost all cohomology classes mentioned in
Theorem 2. In §8 we study some configuration spaces and local sys-
tems involved in the calculations of this kind. In particular, we prove
that all subsequent columns almost do not contribute to cohomology
groups of low dimensions mentioned in Theorem 2 (except for a class
of H8k−17(P (d, k) \ Σ,Q) coming from the fourth column).

2. Simplicial resolution and main spectral sequence

2.1. Systems of elementary conditions and the first reductions.
Denote by W the space Sym2(C1) of unordered pairs of points
{α, β} in C1. By Vieta theorem, it can be identified with the space
of polynomials of the form t2+ut+ v in the variable t with complex
coefficients, in particular, is homeomorphic to C2.

Definition 3. For any point χ = {α, β} ∈ W, the corresponding
elementary condition on the maps f : C1 → Ck is the condition
f(α) = f(β) if α ̸= β or f ′(α) = 0 if α = β. The space W is
called the space of elementary conditions.

⋇ ⊂ Σ is the set of all maps of class P (d, k) satisfying infinitely
many elementary conditions.

For any natural d, the d-rank of a finite system of elementary
conditions χj = {αj, βj} is the complex codimension of the set of
polynomials φ : C1 → C1 of the form (1) satisfying all corresponding
conditions φ(αj) = φ(βj) or φ′(αj) = 0 (if αj = βj) in the space of
all polynomials (1). The rank of such a system of elementary conditions
is the common value of its d-ranks for all sufficiently large d.

Remark 4. By the interpolation theorem, for this “sufficiently large
d” we can take any d ≥ 2s− 1 where s is the number of conditions
in the system. Accordingly, if ρ < d

2
, then the rank of a system of

elementary conditions is equal to ρ if and only if its d-rank is equal
to ρ.

Definition 5. An affine complex subspace K ⊂ P (d, k) is called
decent if the closure of K in the projectivization CP dk of P (d, k)
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a) is transversal to the stratified variety consisting of the discriminant
Σ and the “hyperplane at infinity” CP dk \ P (d, k),

b) is transversal to the closures of all subspaces of codimension k in
P (d, k) defined by single elementary conditions, and has non-empty
intersections with each of them in P (d, k), and

c) does not intersect the closure of the set ⋇ in CP dk.

By the generalized Lefschetz plane section theorem (see, for example,
[7], §2.2 of Introduction), if an affine subspace K ⊂ P (d, k) of complex
dimension D is decent, then for all i < D we have

H i(P (d, k) \ Σ) ≃ H i(K \ Σ) .
By Alexander duality (cf. [1]), the cohomology groups of the space

K \ Σ, dimK = D, are isomorphic to the Borel–Moore homology
groups of the discriminant,

(3) H̃ i(K \ Σ) ≃ H̄2D−1−i(Σ ∩ K).

It is these groups that will be calculated in the rest of the work.

Proposition 6. 1) If a map f = (f1, . . . , fk) of class P (d, k) belongs
to ⋇, then there exists a polynomial P (z) of degree greater than 1
and polynomials Q1, . . . , Qk such that all k components fj of f
have the form Qj(P (z)).

2) If f does not belong to ⋇ then it satisfies less than (d−1)2

2
distinct elementary conditions.

Proof. 1. If there are infinitely many points x ∈ Ck such that
f(α) = x for more than one point α ∈ C1 or x is a critical value
of f , then such points x form a complex algebraic curve C ⊂ Cn.
Infinitely many points of C1 are mapped by f to this curve, hence
they all go to it. By Hartogs’ theorem, this map f : C1 → C can be
lifted to a holomorphic map f̌ of C1 to the normalization Č of C.

This curve Č is simply connected. Indeed, any element of its fun-
damental group can be realized by a loop that avoids the critical values
of f̌ , and therefore can be lifted to a path in C1 covering our loop.
Since f̌ is a ramified covering with finitely many preimages of each
point, some finite iteration of our loop will be lifted to a closed path,
which can be contracted in C1, and the projection of this contraction
contracts our iterated loop in Č. But the fundamental groups of
complex curves have no elements of finite order greater than 1, hence
already our loop is contractible in Č.

Thus, Č is a simply-connected non-compact algebraic curve, hence
it is isomorphic to C1, and f̌ is a polynomial P whose degree is
equal to the number of preimages of a generic point of C under the
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map f . Also, the composition of the normalization map Č → C,
the identical embedding C → Ck, and the projection of Ck to the
jth coordinate axis is an algebraic map Qj : C1 → C1 such that
fj ≡ Qj ◦ P , hence Qj is also a polynomial.

2. At least some two components fj, fl of such a map f define
a map C1 → C2 satisfying only finitely many elementary conditions.
The condition fj(α) = fj(β), α ̸= β, defines a curve of degree d− 1
in the complex plane with coordinates α and β. The condition
(fj − fl)(α) = (fj − fl)(β), α ̸= β, defines a curve of degree at most
d − 2. Elementary conditions satisfied by fj and fl correspond
to the intersection points of these two curves, factorized through the
involution (α, β) → (β, α). This involution has at most d−2 invariant
points (corresponding to the common zeros of derivatives of fj and
fl). So the number of these conditions is estimated from above by

(d− 2) + (d−2)2

2
< (d−1)2

2
. □

Corollary 7. The complex dimension of the variety ⋇ ⊂ P (d, k) is
equal to a+k d

a
−1, where a is the least divisor of d greater than 1.

The decent subspaces form a non-empty Zariski open subset in the
space of all affine subspaces of dimension less than dk − dim(⋇) in
P (d, k). □

2.2. Canonical normalization of the discriminant. Let K be
a decent affine subspace in P (d, k). For any elementary condition
χ ∈ W denote by L(χ) the subspace in K consisting of maps
satisfying this condition. By item b) of Definition 5, codimensions of
all these subspaces in K are then equal to k.

Canonical normalization Σ̂ of Σ ∩ K is the subset of W × K
consisting of all pairs (χ, f) such that f ∈ L(χ). The normalization

map Σ̂ → Σ ∩ K is induced by the projection W × K → K. The

restriction of the standard projection W × K → W to Σ̂ supplies

Σ̂ with the structure of a complex affine bundle over W with fibers
isomorphic to CdimK−k.

2.3. Simplicial resolution of the discriminant. Let us fix a generic
polynomial embedding Φ : W → CW into the space CW of a very
large dimension compared to d. For any finite collection of distinct
points χ1, . . . , χN ∈ W, denote by ∆(χ1, . . . , χN) the convex hull of
all N points Φ(χi) ∈ CW , and by L(χ1, . . . , χN) the intersection of
all subspaces L(χ1), . . . , L(χN) in the decent subspace K ⊂ P (d, k).

If the number W is indeed large enough and Φ is generic, then
∆(χ1, . . . , χN) is an N -vertex simplex for any set of points χi such
that the space L(χ1, . . . , χN) is non-empty (by Proposition 6 (2)
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such numbers N are uniformly bounded). Moreover, any two such
simplices have only predictable intersections: these are their common
faces spanning the common vertices Φ(χi). We will always assume
that these conditions on W and Φ are satisfied.

Denote by σ the subset of CW × K equal to the union of all
products

(4) ∆(χ1, . . . , χN)× L(χ1, . . . , χN)

over all natural N and all subsets {χ1, . . . , χN} ∈ B(W, N). Denote
by Λ the image of the projection of σ to CW .

Proposition 8. Under the above genericity conditions on Φ, the
map σ → Σ∩K defined by the standard projection CW ×K → K is
proper and surjective, and the homomorphism H̄∗(σ) → H̄∗(Σ) of the
Borel–Moore homology groups induced by this map is an isomorphism.
□

Proof is standard, see, for example, [12], §§V.2.3 and III.3.4.

2.4. Main filtration and main spectral sequence. Let K ⊂ P (d, k)
be a decent subspace of complex dimension D.

The resolution space σ of Σ ∩ K has a natural finite increasing
filtration σ1 ⊂ σ2 ⊂ · · · ⊂ σ: its term σρ is the union of all products
(4) over all systems of elementary conditions χ1, . . . , χN of d-rank ρ.
The image Λ ⊂ CW of the projection of σ to CW is also naturally
filtered: its subspace Λρ is the image of σρ.

This filtration on σ defines a homological spectral sequence Er
ρ,κ

computing the Borel–Moore homology group of the resolution space σ.
Define a cohomological spectral sequence by setting

(5) Ep,q
r ≡ Er

−p,2D−q−1.

By Alexander duality (3), this spectral sequence converges to the
cohomology group of K \ Σ.

Proposition 9. The cohomological spectral sequence (5) has non-
trivial groups Ep,q

1 only in the wedge {p < 0, q ≥ −2p(k − 2)},
in particular, it has only finitely many such non-zero groups on any
diagonal {p+ q = const}.

Proof. For any ρ = 1, . . . , d, the complex codimension of the image of
the projection of σρ\σρ−1 to K is at least ρ(k−2). Indeed, the space
of affine planes of codimension kρ in P (d, k), defined by systems of
elementary conditions of d-rank ρ, is at most 2ρ-dimensional, so the
union of the points of all these planes has (complex) codimension at
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least ρ(k− 2) in P (d, k). By transversality condition a) of Definition
5, the same is true for its intersection with K.

The preimage of any point f ∈ K of the image of this projec-
tion σρ \ σρ−1 → K is a simplex ∆(χ1, . . . , χN) ⊂ Λ, from which
some of its faces (corresponding to systems of elementary conditions
defining subspaces of greater dimension in P (d, k)) are removed. The
Borel–Moore homology group of this fiber is isomorphic to the relative
homology group of a certain pair of finite simplicial complexes of di-
mensions ρ − 1 and ρ − 2, see [9] or §VI.7.1 of [12]. Namely, the
first of these complexes is the order complex of all planes in P (d, k)
containing the point f and defined by systems of elementary con-
ditions of d-rank ≤ ρ, and the second complex is the link of this
order complex. Thus, by the Leray spectral sequence of our projection
σρ \ σρ−1 → K the Borel–Moore homology groups of σρ \ σρ−1 are
trivial in dimensions exceeding 2(D − ρ(k − 2)) + ρ− 1. By (5), this
implies the statement of proposition. □

2.5. Terms Ep,q
1 for stable values of p.

Definition 10. A D-dimensional affine subspace K of P (d, k) is
sufficient if it is decent, and any subspace of K defined by a system
of elementary conditions of rank

(6) ρ <
D + 1

k + 2

is non-empty and has codimension exactly kρ in K.

Proposition 11. If D < dk − dim(⋇) then the sufficient subspaces
form a Zariski open subset in the space of all D-dimensional affine
subspaces of P (d, k).

Proof. The set of not decent subspaces obviously is Zariski closed. By
Remark 4, any system of elementary conditions of rank ρ satisfying
(6) defines a subspace of codimension kρ in the space P (d, k). It
is easy to calculate that the set of affine D-dimensional subspaces in
P (d, k) that are non-transversal or parallel to a particular subspace
of codimension kρ has codimension D − kρ + 1 in the space of
all affine subspaces of this dimension. The family of all subspaces of
codimension kρ defined by systems of elementary conditions of rank ρ
is at most 2ρ-parametric, hence the union of these sets corresponding
to all such subspaces is a semialgebraic set of (complex) codimension at
least D+1−ρ(k+2) in the space of affine subspaces of dimension D
in P (d, k). By (6), this number is positive, so the subspaces satisfying
the last condition of Definition 10 also form a Zariski open set. □
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Corollary 12. For any two numbers d′ > d, if K ⊂ P (d, k) and
K′ ⊂ P (d′, k) are sufficient subspaces of dimensions D and D′, then
all groups Ep,q

1 (d′), p ∈
[
−min

(
D+1
k+2

, D
′+1

k+2

)
,−1

]
, of our cohomologi-

cal spectral sequence calculating the group H∗(K′ \Σ) are isomorphic
to groups Ep,q

1 (d) with the same p and q.

Proof. Since K is sufficient, for any ρ satisfying inequality (6)
the difference σρ \ σρ−1 together with the restriction of the projection
CW ×K → CW to it is a (D− kρ)-dimensional complex affine bundle
over the semialgebraic set Λρ \ Λρ−1 ⊂ CW . In particular, we have
the Thom isomorphism

(7) E1
ρ,κ ≡ H̄ρ+κ(σρ \ σρ−1) ≃ H̄ρ+κ−2(D−kρ)(Λρ \ Λρ−1) .

If K′ and K are sufficient subspaces of P (d′, k) and P (d, k) re-
spectively, then these terms of homological spectral sequences calculat-
ing Borel–Moore homology groups of (simplicial resolutions of) spaces
Σ∩K′ and Σ∩K coincide up to the shift of index q by 2(D′ −D).
The corresponding transformations (5) erase this difference. □

However, to prove the commutation of these isomorphisms with
higher differentials of spectral sequences we need some additional effort
and additional restrictions on dimensions; this will be done in the next
section.

3. Proof of Theorem 1

We assume that a number k ≥ 3 is fixed for this entire section.

3.1. Definition of the function dk(s) (see Theorem 1).

Definition 13. The degeneracy of a non-constant algebraic map f :
C1 → M , where M is a manifold, is equal to 0 if f is a smooth
embedding, otherwise it is equal to the sum of

(1) numbers a−1 over all points of M which are images of a > 1
points of C1,

(2) the number of points of C1 at which f ′ = 0, and
(3) the degeneracy of the induced map f̌ : C1 → M̌ , where M̌ is

the result of the blow-up of M at all points of M mentioned
in item (1) above and all critical values of f .

The degeneracy of a map can be infinite, if the number of points
mentioned in item (1) of this definition is infinite.

Proposition 14. For any natural D there exist numbers T (D) and
δ1(D) such that generic affine subspaces of dimensions at most D in
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the spaces P (d, k) with arbitrary d ≥ δ1(s) do not contain maps
f : C1 → Ck of degeneracy greater than T (D). □

Further, for an arbitrary map f : C1 → Ck of class P (d, k) \ ⋇
consider the space J (f) of multigerms (ψ1, . . . , ψr) of holomorphic
maps ψl : (C1, τl) → Ck, where τl are all critical points of f and
all preimages of self-intersection points of f . The restriction of f
to these neighborhoods is the marked point {f} of this space. The
group H(f) of simultaneous local holomorphic diffeomorphisms C1 →
C1, defined in neighborhoods of all points τl, and local holomorphic
diffeomorphisms Ck → Ck, defined in neighborhoods of all images of
these points, acts on the space J (f). The notion of an infinitesimally
versal deformation of this action is defined in the usual way, see [2].
Namely, a deformation of the multigerm (ψ1, . . . , ψr) is a collection
of maps Ψl : (C1 × Cm) → Ck defined in some neighborhoods of
points τl × 0 ∈ C1 × Cm such that ψl ≡ Ψl(·, 0) for all l. So, a
deformation can be considered as a family of collections of r maps
C1 → Ck defined in neighborhoods of points τl and depending on
the m-dimensional parameter µ = (µ1, . . . , µm). Such a deformation
is called infinitesimally versal if this family intersects transversally the
H(f)-orbit of the collection (ψ1, . . . , ψr) in the space J (f) at the
point {f}. In formal terms, this means that any element of J (f), i.e.,
a collection of germs θl(C1, τl) → Ck, l = 1, . . . , r, can be represented
as a sum of

(A) a collection of maps of the form V ◦ ψl : (C1, τl) → Ck where
V is a holomorphic vector field in Ck defined in a neighborhood of
the union of all points ψl(τl);

(B) a collection of Lie derivatives of all maps ψl along some holo-
morphic vector fields in C1 defined in neighborhoods of all points τl,
and

(C) a linear combination of the form
m∑
i=1

αi

(
∂Ψ1

∂µi

∣∣∣∣
µ=0

, . . . ,
∂Ψr

∂µi

∣∣∣∣
µ=0

)
,

where αi are some complex coefficients and µi are parameters of the
deformation (Ψ1, . . . ,Ψr).

The space P (d, k) provides a deformation (with parameters λi) of
the collection {f} of germs of any map f ∈ P (d, k) at all points
τl ∈ C1 as above.

Definition 15. A map f ∈ P (d, k) is tame if the space P (d, k) is
an infinitesimally versal deformation of the action of the corresponding
group H(f) on the space J (f) at the point {f}.
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Proposition 16. For any natural number T there exists a number
δ2(T ) such that all maps f ∈ P (d, k), d ≥ δ2(T ), of degeneracy at
most T are tame.

Proof. Given a map f ∈ P (d, k), let us compose it with a generic
projection π : Ck → C2 and consider the set of obtained germs of
plane curves at the projections of all singular points of the curve f(C1).

For any T there is only a finite set of types of sets of plane curve
singularities (described by Puiseux exponents and tangency orders of
different local components), which can appear in this way from maps
f of degeneracy ≤ T (where f can belong to spaces P (d, k) with
arbitrary d).

For each of these germs of the plane curve π(f(C1)) we have the
following fact.

Lemma 17. Let γl : (C1, 0) → (C2, A), l = 1, . . . , u, be a finite col-
lection of germs of polynomial maps such that any point of a punctured
neighborhood of A is the image of at most one point of the disjoint
union of u copies of C1. The induced homomorphism from the alge-
bra of germs of holomorphic functions (C2, A) → (C1, 0) to the algebra
of collections of u germs of functions (C1, 0) → (C1, 0) (sending any
germ θ : (C2, A) → (C1, 0) to the collection of maps θ◦γl) then covers
some finite degree of the latter algebra (i.e., there is a number ν such
that any collection of u functions (C1, 0) → (C1, 0) having zero of
order ≥ ν at the origins belongs to the image of this homomorphism).
This degree ν can be effectively estimated from above by the singularity
type of our collection of parametric curves γl.

Proof of the Lemma. In the case of an irreducible curve (that is, if
u = 1) this statement easily follows from the existence of a Puiseux
expansion of the corresponding map γ1. If u > 1, consider the similar
homomorphism to the algebra of functions on the union of first u− 1
copies of C1 (i.e. of preimages of maps γ1, . . . , γu−1). By induction
hypothesis this homomorphism satisfies the statement of the Lemma.
Its kernel contains all holomorphic functions of the form φ ·κ, where
φ is an arbitrary germ (C2, A) → (C1, 0) and κ is the product of
the equations of all curves γl(C1), l = 1, . . . , u − 1. The restriction
of κ to the u-th component is equal to a non-zero polynomial of its
parameter; the degree of the lowest non-zero term of this polynomial is
determined by the singularity type of our collection {γl}. By induction
hypothesis the space of restrictions of arbitrary functions φ contains a
degree of the maximal ideal in the space of functions in this parameter,
hence the same (with a greater value of the degree) is true for the space
of restrictions of functions φ · κ. □
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Corollary 18. For any natural T there is a number δ3 such that
for any map f of degeneracy ≤ T already the summands of type
(A) from the above definition of infinitesimal versality corresponding
to all singular points of the curve f(C1) contain all collections of local
maps (ψ1, . . . , ψr), all of whose components are defined by collections
of function germs belonging to certain degrees of the maximal ideals of
corresponding algebras of holomorphic germs (C1, τ) → C1, and the
sum of these degrees over all these singular points is at most δ3. □

By the interpolation theorem, if d is large enough then the sum-
mands of type (C) for the deformation P (d, k) of the collection of
germs {f} generate the quotient space of J (f) by the space of such
collections (ψ1, . . . , ψr). This implies Proposition 16. □

Definition 19. Given a natural number s, D(s) is the minimal
natural number D such that

(8) s ≤ min

(
D − 1,

([
D

k + 2

]
+ 1

)
(2k − 5)− 2

)
.

The number dk(s) assumed in Theorem 1 is equal to the maximum
of the numbers δ1(D(s)) and δ2(T (D(s))), where δ1(·) and T (·)
are defined in Proposition 14, and δ2(·) in Proposition 16.

3.2. Isomorphism of spectral sequences in the stable domain.
The restriction of the main filtration of the space σ ⊂ Λ × K to
the term στ of this filtration defines a spectral sequence Er

ρ,κ(στ )

converging to group H̄∗(στ ).

Proposition 20. For any numbers d < d′, let K ⊂ P (d, k) and
K′ ⊂ P (d′, k) be sufficient affine subspaces of dimension D, all points
of which are tame. Then for any τ < D+1

k+2
the homological spectral

sequences defined by restricting our filtrations to the terms στ and
σ′
τ of our resolutions σ ⊂ Λ × K and σ′ ⊂ Λ × K′ respectively are

isomorphic to each other starting from their pages E1.

Proof. Both K and K′ are affine subspaces of the space P̃ (d′, k)
of maps C1 → Ck defined by systems of k polynomials of the form
λ0z

d′ + λ1z
d′−1 + · · · + λd′ . Our construction of simplicial resolutions

cannot be applied immediately to the discriminant set Σ ∩ P̃ (d′, k),
since it has points satisfying infinitely many elementary conditions;
however, the analogue σ̃τ ⊂ Λτ × P̃ (d′, k) of the τ -th term of this
simplicial resolution can be constructed in exactly the same way as
previously.

Since all points f of K are tame, the subspace P (d, k) of P̃ (d′, k)
is transversal to the stratified variety Σ ∩ P̃ (d′, k) at all points of its
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subspace K. Since K is a decent subspace of P (d, k) (see Definition
5), it also is transversal to Σ∩P̃ (d′, k) in P̃ (d′, k). Let B be a huge
“exhausting” open ball in P̃ (d′, k) such that the identical embeddings
induce isomorphisms H̄∗(X ∩B) ≃ H̄∗(X) for all involved algebraic
varieties X (such as Σ ∈ P̃ (d′, k), Σ ∩ P (d, k), Σ ∩ K, different
their strata, etc), and the boundary of B is transversal to all these
varieties.

By Thom isotopy lemma (see e.g. [7]), there exists a tubular neigh-
borhood U of the subspace K in P̃ (d, k) ∩ B such that the
pair (U,Σ ∩ U) is homeomorphic to the direct product of the pair
(K∩B,Σ∩K∩B) and an open ball of dimension 2(dimC P̃ (d

′, k)−
dimC K) ≡ 2((d′ + 1)k−D). Consider the subset σ̃τ (U) of the space
σ̃τ ⊂ Λτ × P̃ (d′, k) consisting of only the points whose projections to
P̃ (d′, k) belong to U . It can be considered as the τ -th term of the
simplicial resolution of the set Σ̃(d′, k)∩U . By construction, it is also
homeomorphic to the product of στ and an open ball of dimension
2((d′ + 1)k−D). In particular, the spectral sequences calculating the
Borel–Moore homology groups of these spaces are isomorphic to each
other up to a shift of dimensions: Er

ρ,κ(σ̃τ (U)) ≃ Er
ρ,κ−2((d′+1)k−D)(στ )

for all r ≥ 1, ρ ≤ τ and any κ. On the other hand, the identical
embedding σ̃τ (U) → σ̃τ induces a homomorphism of the correspond-
ing spectral sequences. This homomorphism is an isomorphism of all
terms E1

ρ,κ: indeed, any set σ̃ρ \ σ̃ρ−1 is the space of an affine bundle
with base Λρ \ Λρ−1, and its subset σ̃ρ(U) \ σ̃ρ−1(U) is the space
of a fiber bundle, the base of which is a subspace of Λρ \ Λρ−1 hav-
ing the same Borel–Moore homology groups, and the fibers are open
balls in the fibers of the former bundle. Thus, our spectral sequences
calculating the Borel–Moore homology groups of spaces στ ⊂ Λτ ×K
and σ̃τ ⊂ Λτ × P̃ (d′, k) are isomorphic up to a shift of indices κ by
2((d′ + 1)k −D).
In the same way we prove that our spectral sequence computing the

homology groups of σ′
τ is isomorphic to the same spectral sequence

for σ̃τ up to the same shift of indices κ. In particular, our spectral
sequences for the spaces στ and σ′

τ are isomorphic to each other. □

Corollary 21. 1. In conditions of Proposition 20, spectral sequences
(5) converging to cohomology groups of corresponding spaces K′ \ Σ′

and K\Σ of complex knots are isomorphic to each other starting from
term E1 in the domain of the (p, q)-plane where

(9) p+ q ≤
([

D

k + 2

]
+ 1

)
(2k − 5)− 2.
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Table 2. Column p = −3 of main spectral sequence

q 6k − 11 6k − 10 6k − 9 6k − 8 6k − 7 6k − 6 6k − 5

E−3,q
1 Z2 Z3 Z⊕ Z3 T T Z⊕ T T

In particular, groups H i(K \ Σ) and H i(K′ \ Σ) are isomorphic to
each other for i not exceeding the right-hand part of (9).

2. The last isomorphisms are natural.

Proof. 1. By Proposition 9 all non-zero terms Ep,q
1 of these cohomolog-

ical spectral sequences with p < −
[

D
k+2

]
(which only can be different

for these two spectral sequences or provide different differentials) lie in
the domain of the (p, q)-plane, where p+ q ≥

([
D

k+2

]
+ 1
)
(2k − 5).

2. We can connect our subspaces K and K′ by a path {Kτ},
τ ∈ [0, 1], in the space of affine D-dimensional subspaces of P̃ (d′, k)
satisfying all the same genericity conditions. Consider the space of
pairs (τ, f) where τ ∈ [0, 1] and f ∈ Kτ \ Σ. The inclusion of any
fiber Kτ \Σ to this space induces then an isomorphism of all homology
groups in dimensions not exceeding the right-hand part of (9). □

Corollary 22. Under the conditions of Proposition 13, the groups
H i(P (d, k) \ Σ) and H i(P (d′, k) \ Σ) are naturally isomorphic to
each other for i not exceeding the right-hand part of (8).

Proof of this corollary is the composition of Corollary 21 and strong
Lefschetz plane section theorem, see [7]. □

Proof of Theorem 1. By Propositions 14 and 16, for any natural s
there are numbers dk(s) and D(s) (see Definition 19) such that the
conditions of Proposition 20 are satisfied for generic D-dimensional
subspaces of spaces P (d, k) with d ≥ dk(s) and D = D(s). Then
Theorem 1 follows from Corollary 22. □

3.3. Main technical result. Also by Propositions 14 and 16, and
Corollary 21, when d grows to infinity, our spectral sequences stabilize
to a universal (depending only on k) spectral sequence. We will call
it the main cohomological spectral sequence of our problem.

Theorem 23 (see Fig. 1). 1. The column E−1,∗
1 of main cohomological

spectral sequence contains only one non-zero group E−1,2k−4
1 ∼ Z.

2. The column E−2,∗
1 of this spectral sequence contains only two

non-zero groups, E−2,4k−7
1 ∼ Z2 and E−2,4k−4

1 ∼ Z3.
3. All groups E−3,q

1 with q ̸∈ [6k − 11, 6k − 5] are trivial, while
such groups with q ∈ [6k− 11, 6k− 5] are as shown in Table 2, where
T denotes finite (in general, different) groups.
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q

-

−5 −4 −3 −2 −1

6

p

2

3

4

5

6

7

8

9

10

11

12

13

14

Z

Z2

0

0

Z3

Z2

Z3

Z⊕ Z3

T

T

Z⊕ T

T

Z2

T

Z⊕?Z2

T

Zeros

Zeros

Figure 1. Page E1 of main spectral sequence for k = 3

4. Group E−4,8k−13
1 is infinite.

5. For any p ≤ −2, group Ep,q
1 of main spectral sequence

a) is trivial for q ≤ −p(2k − 4),
b) is isomorphic to Z2 for q = −p(2k − 4) + 1, and
c) is finite for q ≤ −p(2k − 4) + 2.

The picture of this spectral sequence for k > 3 can be obtained
from Fig. 1 by the shift of any column {Ep,∗

1 } by −2p(k − 3) in the
vertical direction.

Statements 1, 2, 3, 4 and 5 of this theorem will be proved in Sections
5, 6, 7, 8.1 and 8.2, respectively. Theorem 2 follows directly from this
one.
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4. On the filtration terms in the stable range

Spaces Λρ \ Λρ−1 for ρ in the stable range (i.e. satisfying (6)) are
naturally stratified according to the structure of systems of elementary
conditions of rank ρ.

Example 24. Some such systems of rank 2 are pairs of conditions
f(α) = f(β), f(γ) = f(δ), where all points α, β, γ, δ are distinct;
some others are of the form f(α) = f(β) = f(γ). The corresponding
simplex ∆(·) in Λ2 in the first case is a segment (whose endpoints
Φ({α, β}) and Φ({γ, δ}) lie in Λ1), while in the second case we
have four such simplices in Λ2 \ Λ1: the triangle spanned by points
Φ({α, β}), Φ({β, γ}), Φ({γ, α}), and each of its three edges (whose
endpoints again belong to Λ1).

Definition 25 (see [11]). Let A = (a1, . . . , as) be an unordered set
of natural numbers (some of which may be the same), all of whose ele-
ments aj are greater than 1. Then an A-configuration is an arbitrary
set of a1+ · · ·+as pairwise distinct points of C1 divided into subsets
of cardinalities a1, . . . , as. If additionally b is a non-negative integer,
then a (A, b)-configuration in C1 is an arbitrary A-configuration com-
plemented by b pairwise distinct points (some of which may coincide
with points of the A-configuration). Number

(10) (a1 − 1) + · · ·+ (as − 1) + b

is called the complexity of any (A, b)-configuration.

If a D-dimensional subspace K ⊂ P (d, k) is sufficient, then for any
number ρ satisfying (6) there is a one-to-one correspondence between
(A, b)-configurations of complexity ρ and subspaces of codimension kρ
in K defined by systems of elementary conditions of rank ρ. Namely,
any (A, b)-configuration defines a subspace consisting of maps that
glue points of any of the s subsets of its A-configuration and have
zero derivative at any of additional b points.

4.1. Simplices associated with (A, b)-configurations and com-
plexes of connected graphs. Any (A, b)-configuration Γ, A =
(a1, . . . , as), also defines a simplex ∆(Γ) with

(
a1
2

)
+ · · · +

(
as
2

)
+ b

vertices in CW : this spans all points Φ({α, β}), where α and β
are some two points of one of s subsets of this configuration, and all
points Φ({α, α}) such that α is a point of its b-part. Thus, the term
Λρ of main filtration of Λ is the union of such simplices defined by
all (A, b)-configurations of complexity ≤ ρ.
If the symbol A consists of a single number, A = (a1), then

the faces of such a simplex associated with any A-configuration are
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in a natural one-to-one correspondence with simple graphs with a1
vertices corresponding to points of this configuration: we draw an edge
connecting some two vertices α and β if and only if the point
Φ({α, β}) is one of the vertices of this face. This simplex belongs to the
term Λa1−1 of the main filtration, moreover, all its faces corresponding
to not connected graphs (in particular, graphs with isolated vertices)
belong to Λa1−2. Similarly, the faces of a simplex associated with
an arbitrary (A, b)-configuration are characterized by collections of s
graphs on a1, . . . , as vertices, and by additional marking or not each
of the b singular points. This entire simplex lies in Λρ where ρ is
the complexity

∑
(ai− 1)+ b of the symbol (A, b). Interior points of

a face do not belong to the lower term Λρ−1 of filtration if and only
if all corresponding s graphs are connected and all b singular points
are marked.

Thus, the Borel–Moore homology groups of the parts of these sim-
plices lying in Λρ \ Λρ−1 are described in the following terms.

Definition 26. The complex of connected graphs on a vertices is
the factor complex of the simplicial complex generated by faces of the(
a
2

)
-vertex simplex by the subcomplex generated by faces corresponding

to non-connected graphs.

Proposition 27 (see e.g. [12], §V.3). The complex of connected graphs
on a vertices is acyclic in all dimensions other than a− 2, and its
(a− 2)-dimensional homology group is isomorphic to Z(a−1)!.

Corollary 28. For any (A, b)-configuration Γ of complexity ρ,
A = (a1, . . . , as), the Borel–Moore homology group H̄i(∆(Γ) \ Λρ−1)
of the part of ∆(Γ) lying in Λρ \ Λρ−1 is trivial in all dimensions
other than ρ − 1 and is free Abelian of rank

∏s
m=1(am − 1)! for

i = ρ− 1.

Indeed, the whole simplex ∆(Γ) can be considered as the join of its
s faces spanned by the vertices Φ(α, β) where α and β belong to
the same subset of the configuration, and additional b points Φ(α, α)
where α belongs to the b-part of the configuration. The set ∆(Γ) ∩
(Λρ \ Λρ−1) is the join of the parts of these faces corresponding to
connected graphs, and of all b additional points. □

4.2. Inverse auxiliary filtration (see [13]). There is a convenient
filtration Θ0 ⊂ Θ1 ⊂ · · · ⊂ Θρ−1 = Λρ \Λρ−1 in any space Λρ \Λρ−1.
For example, if ρ = 2 then the subspace Θ0 consists of all intervals
from the first case considered in Example 24 and the edges of triangles
from the second case; the set Θ1 \ Θ0 consists only of interior parts
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of these triangles. For certain historical reasons, this filtration is called
the inverse auxiliary filtration or just inverse filtration of Λρ \ Λρ−1.

Definition 29. For any symbol A = (a1, a2, . . . , as) as above, denote
by |A| the sum a1+ · · ·+as and by #(A) the number s of elements
aj in A.

The defect of an A-configuration is equal to twice its complexity
minus the number of geometrically distinct points of this configuration
(obviously it is a non-negative integer, and can be defined also as the
difference of the complexity and #(A)). The term Θj of the auxiliary
inverse filtration of the space Λρ \ Λρ−1 is defined as the closure in
this space of the union of simplices ∆(Γ) defined by A-configurations
Γ of complexity ρ and defect ≤ j.

Let us reveal the operation of closure in this definition.
First, any simplex ∆(Γ) in Λ defined by a (A, b)-configuration

with b > 0 belongs to the closure of the set of similar simplices defined
by A′-configurations where symbol A′ is obtained from A by adding
b numbers 2. Therefore the entire of Λρ \Λρ−1 is indeed covered by
the closures of terms Θj.

Further, for any symbol A = (a1, . . . , a#(A)) define the correspond-
ing configuration space B(A) as the space of unordered collections
of |A| points in C1 (some of which may be the same) split into
subcollections of cardinalities a1, . . . , as such that all points of any
subcollection of cardinality aj > 2 are pairwise distinct.

To fix a topology on the space B(A), we realize it as the Cartesian
product of the spaces B(C1, aj) over all indices j = 1, . . . ,#(A)
with aj > 2, and spaces W corresponding to all aj = 2, factorized
through permutations of such factors corresponding to equal values of
aj. The points of B(A) are called Ā-configurations.
Any Ā-configuration Γ defines an affine subspace L(Γ) of the

space of polynomials (1): it consists of maps that take equal values at
all points of each of #(A) subcollections, and have zero derivative at
all points α ∈ C1 such that our Ā-configuration Γ contains the
subcollection {α, α}. The codimension of this subspace L(Γ) does
not depend on d if d is sufficiently large (say, d > |A|). This

stable codimension does not exceed |A| −#(A); denote by B̃(A) the
Zariski open subset of B(A) consisting of configurations for which
this codimension is exactly equal to |A| −#(A).

Lemma 30. An Ā-configuration belongs to the space B̃(A) if and
only if

1) no two of its subcollections have a pair of common distinct points,
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2) it has no two equal subcollections of the form (α, α), and
3) there are no closed chains of ≥ 3 its subcollections such that any

two neighboring subcollections of the chain have a common point.

This lemma is elementary. □

Like A-configurations, any Ā-configuration Γ defines a polyhedron
∆(Γ) in CW , namely, it is the convex hull of all points Φ({α, β}),
where α and β are two distinct points of one of subcollections of Γ,
and all points Φ({α, α}) over subcollections of the form {α, α}. If Ā-

configuration Γ belongs to B̃(A) (and the map Φ satisfies genericity
conditions of §2.3), then ∆(Γ) is a simplex with

(
a1
2

)
+ · · · +

(
a#(A)

2

)
vertices. Now, a new definition of main and inverse filtrations on Λ
can be formulated.

Definition 31. Ā-configurations satisfying three restrictions of Lemma
30 are called regular. For any symbol A = (a1, . . . , a#(A)) as above,
the A-block in Λ ⊂ CW is the union of simplices ∆(Γ) over all
regular Ā-configurations Γ. For any natural ρ, the ρ-th term Λρ

of the main filtration of the space Λ is the union of A-blocks over
all symbols A with |A| − #(A) ≤ ρ. For any natural ρ and any
j ∈ {0, 1, . . . , ρ− 1}, the j-th term Θj of the inverse filtration of the
term Λρ \ Λρ−1 of the main filtration of Λ is the intersection of this
term Λρ \ Λρ−1 and the union of A-blocks over all symbols A with
|A| −#(A) = ρ and |A| − 2#(A) ≤ j.

Lemma 32. Definition 31 of the main and inverse filtrations is equiv-
alent to their definitions given in §2.4 and Definition 29, respectively.

Proof is straightforward: the expansion of the notion of A-configu-
rations to that of Ā-configurations is just an implementation of the
word “closure” in Definition 4.2, cf. [13]. □

As in §4.1, any face of the simplex ∆(Γ) defined by a Ā-configuration
Γ is characterized by a system of #(A) graphs on a1, . . . , a#(A) ver-
tices associated with points of subcollections of Γ; in particular if
some subcollection of Γ is of type {α, α}, then the corresponding
graph is a disjoint pair of points (respectively, a segment connecting
two points) if the point Φ({α, α}) is not (respectively, is) a vertex of
the face.

Definition 33. A simple graph is two-connected if it is connected, and
removing from it an arbitrary its vertex with all incident edges, we
again obtain a connected graph. The complex of two-connected graphs
on a given set of vertices is defined analogously to Definition 26, only



COHOMOLOGY OF SPACES OF COMPLEX KNOTS 19

with replacement of faces corresponding to connected graphs by those
corresponding to two-connected graphs.

Theorem 34 (see [4], [10]). The complex of two-connected graphs on
a vertices is acyclic in all dimensions other than 2a − 4, and its
(2a− 4)-dimensional homology group is isomorphic to Z(a−2)!. □

Lemma 35 (see [13]). For any natural ρ and any j ∈ {0, 1, . . . , ρ−1},
term Θj \ Θj−1 of inverse filtration of the term Λρ \ Λρ−1 of main
filtration of Λ is the disjoint union of certain subsets of all A-blocks
such that |A| − #(A) = ρ and |A| − 2#(A) = j. Namely, any
such subset of any such A-block is a fiber bundle, the base of which is
the corresponding configuration space B̃(A), and the fiber over any

regular Ā-configuration Γ ∈ B̃(A) is equal to the union of interior
points of all faces of the simplex ∆(Γ), such that all corresponding
#(A) graphs are two-connected. □

Corollary 36. For any regular Ā-configuration Γ, the Borel–Moore
homology group of the fiber over the point {Γ}, described in the end
of Lemma 35, is nontrivial only in dimension 2|A| − 3#(A)− 1 and

is isomorphic to a free Abelian group of rank
∏#(A)

j=1 (aj − 2)!. □

Remark 37. In further calculations, we use the same notation Θ0,Θ1,
etc. for terms of inverse filtrations of spaces Λρ \ Λρ−1 with different
ρ: I hope this will not cause any confusion.

5. First term of the main filtration

This term σ1 is isomorphic to the canonical normalization Σ̂ of the
discriminant, i.e. the space of a fiber bundle over Λ1 ≡ Φ(W) ≃ C2

with fibers equal to complex affine subspaces of codimension k in
K. Thus group E1

1,κ of the main homological spectral sequence is
isomorphic to Z for κ + 1 = 2D − 2k + 4 and is trivial in all other
dimensions. By virtue of (5), the corresponding column p = −1 of
the main cohomological spectral sequence is as described in the first
statement of Theorem 23.

6. The second term

Statement 2) of Theorem 23 concerning column E−2,∗
1 follows di-

rectly from the Thom isomorphism (7) for ρ = 2 and the following
calculation of the Borel–Moore homology group H̄∗(Λ2 \ Λ1).

Theorem 38. Let {Er
j,q} be the spectral sequence calculating group

H̄∗(Λ2\Λ1) and generated by the auxiliary inverse filtration {Θ0 ⊂ Θ1}
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Table 3. Page E1 of inverse spectral sequences for
Λ2 \ Λ1 and Λ3 \ Λ2

q

8 Z2 0
7 0 0
6 Z2 Z2

5 0 Z3

4 0 0
0 1 j

q

13 Z2 0 0
12 Z3 0 0
11 Z2 Z2 0
10 0 Z3 0
9 0 0 Z
8 Z6 Z⊕ Z2 Z⊕ Z2

7 Z3 Z Z2

0 1 2 j

of Λ2 \ Λ1. Then all non-trivial groups of its term E1 are shown in
Table 3 (left), and its differential ∂1 : E1

1,6 → E1
0,6 is an isomorphism.

Proof. The term Θ0 in this case is a fiber bundle with base B(W, 2);
its fiber over a pair of points {χ1 ̸= χ2} ⊂ W is the interval in CW

with endpoints Φ(χ1) and Φ(χ2) (these endpoints lie in Λ0). So
we have

(11) H̄i(Θ0) ≃ H̄i−1(B(W, 2),±Z)
for any i. Since W ≃ R4, the space B(W, 2) is homeomorphic to
R4× (0,∞)×RP 3, and the group H̄∗(B(W, 2),±Z) is isomorphic to
Z2 in dimensions 5 and 7 and is trivial in all other dimensions. This
gives us the column j = 0 of the spectral sequence shown in Table 3
(left).

Remaining part Θ1 \Θ0 of Λ2 \Λ1 is a fiber bundle over B(C1, 3):
its fibers are open triangles, the orientation of which is changed by
the monodromy over loops in the base that define odd permutations of
three points. So H̄N(Θ1 \Θ0) ≃ H̄N−2(B(C1, 3),±Z).

Lemma 39. Group H̄i(B(C1, 3),±Z) is isomorphic to Z2 for i = 5,
to Z3 for i = 4, and is trivial for all other i.

This easily follows from calculations in the standard (introduced in [6])
cell decomposition of B(C1, 3), see e.g. [12], §I.4. □

This lemma gives us column j = 1 of Table 3 (left). Let us calculate
its differential ∂1 : E1

1,6 → E1
0,6.

Group E1
1,6 of this spectral sequence is generated by the homol-

ogy class [∇] of a fiber bundle over the hypersurface ∇ ⊂ B(C1, 3)
consisting of configurations of three points α, β, γ ∈ C1, some two of
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which (let us call them β and γ) have equal real parts. The fiber over
such a configuration is a triangle spanned by points Φ(α, β), Φ(β, γ)
and Φ(γ, α). Any such configuration defines three points in W ≡
Sym2(C1), namely the points {α, β}, {β, γ}, and {γ, α}. Choosing
arbitrarily some two of these three points, we obtain a point of the con-
figuration space B(W, 2). The image ∂1([∇]) of the homology class
of the cycle [∇] under the homomorphism ∂1 : E1

1,6 → E1
0,6 ≃ H̄6(Θ0)

is the homology class of the subvariety in Θ0 swept out by intervals
over all points of B(W, 2) obtained in this way from the points of the
cycle ∇. So, by relation (11) it remains to calculate the homology
class of the set of all such points in the group H̄5(B(W, 2),±Z) ∼ Z2.
The coefficient map H̄5(B(W, 2),±Z) → H̄5(B(W, 2),Z2) is an iso-
morphism, therefore this class is characterized by the intersection index
(mod 2) of this cycle (considered as a non-oriented one) with any com-
pact 3-cycle generating the group H3(B(W, 2),Z2) ≃ Z2. For such
a 3-cycle we can take the union of pairs of opposite points of the unit
sphere in W ≃ C2. So, we are looking for triples of distinct points
α, β, γ ∈ C1 such that the real parts of β and γ are the same,
and some two of three sets of coefficients (−α − β, αβ), (−β − γ, βγ),
(−γ−α, αγ) of quadratic polynomials with roots {α, β}, {β, γ} and
{α, γ} are opposite points of the unit sphere in C2. It is easy to
calculate that this happens if and only if the set {α, β, γ} is equal to
the set {0, i,−i}, with an arbitrary labelling of the points of the latter
set by α, β and γ. So, each of the three edges of the triangle over the
point {0, i,−i} ∈ B(C1, 3) gives us an intersection point of our cycles.
Further, {0, i,−i} is a triple self-intersection point of the subvariety
∇ ⊂ B(C1, 3), therefore we have 3× 3 intersections contributing to
the desired intersection index, which is therefore not equal to 0. □

7. Third term

Recall that the third term of the main filtration is the space of an
affine bundle with base Λ3 \ Λ2 and fibers equal to Ckd−3k.

Theorem 40. Let Er
j,q be the spectral sequence calculating the group

H̄∗(Λ3 \ Λ2) and generated by inverse filtration {Θ0 ⊂ Θ1 ⊂ Θ2} of
Λ3 \Λ2. Then its page E1 is as shown in Table 3 (right). Its homo-
morphism ∂1 : E1

1,11 → E1
0,11 is an isomorphism, and homomorphism

∂1 : E1
8,2 → E1

8,1 sends a free generator of E1
8,2 to an element of infinite

order.

The proof of this theorem takes the rest of §7.
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7.1. Term Θ0 of inverse filtration of Λ3 \ Λ2. The only symbol
A of complexity 3 and defect 0 is (2, 2, 2). The correspond-

ing space B̃(A) is the subset B̃(W, 3) of the configuration space
B(W, 3) consisting of all independent triples of elementary conditions,
i.e. triples defining subspaces of complex codimension 3k in K.
Namely, it are all points of B(W, 3) except for the triples of the
form {{α, β}, {β, γ}, {γ, α}}, where α, β and γ are arbitrary three
distinct points of C1.

Term Θ0 of the inverse filtration of Λ3 \Λ2 is the union of all open
triangles in CW spanned by points Φ(χ1), Φ(χ2) and Φ(χ3) for
arbitrary configurations {χ1, χ2, χ3} ∈ B̃(W, 3). In particular, this
term is a fiber bundle with the base B̃(W, 3) and open triangles as
fibers. The Thom isomorphism of this fiber bundle gives us the equality

(12) H̄N(Θ0) ≃ H̄N−2(B̃(W, 3),±Z)
for any N .

Lemma 41. The group H̄i(B(W, 3),±Z) is isomorphic to Z2 for i
equal to 11 and 9, to Z3 for i equal to 10 and 6, and is trivial for
all other i.

Proof. Let us calculate groups H12−i(B(R4, 3),±Z) that are Poincaré
dual to these ones. By the well-known facts about the cohomology
groups (with constant coefficients) of groups S(3) and Z3, and the
exact sequence of the two-fold covering K(Z3, 1) → K(S(3), 1), the
group H i(S(3),±Z) ≡ H i(B(R∞, 3),±Z) is isomorphic to Z2 for all
odd i, to Z3 for i ≡ 2(mod 4), and is trivial for remaining values
of i. By Theorem 2 of [12], §I.4, the map

(13) Hm(B(R∞, 3),±Z) → Hm(B(R4, 3),±Z)
induced by the inclusion R4 ↪→ R∞ is epimorphic for all i. The
canonical decomposition of the space B(R4, 3) into open cells used
in this theorem has only cells of codimension up to 6, therefore only
the elements of groups Hm(S(3),±Z) with m ≤ 6 can contribute to
Hm(B(R4, 3),±Z). All stable cells of B(R∞, 3) of codimension up to
3 appear in B(R4, 3), therefore for m ≤ 3 the map (13) is an isomor-
phism. The only cell of codimension 6 (consisting of 3-configurations,
all three points of which have equal orthogonal projections to a fixed
hyperplane) appears in the boundary of each of two cells of codimen-
sion 5 with coefficient ±3, therefore the group Z3 in dimension
m = 6 survives the map (13). The group Z2 in dimension 5 does
not, as follows easily from the consideration of cells of codimension 4,
5 and 6. Thus, the group Hm(B(R4, 3),±Z) is isomorphic to Z2 for
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m equal to 1 and 3, to Z3 for j equal to 2 and 6, and is trivial
for all other j. By Poincaré duality, this proves our lemma. □

The difference B(W, 3) \ B̃(W, 3) is obviously homeomorphic to
the space B(C1, 3), and the restriction of the local system ±Z (de-
fined on the whole B(W, 3)) to this difference is isomorphic to the
local system ±Z defined in the terms of B(C1, 3). Therefore, the
statement of Theorem 40 concerning the column j = 0 of Table 3
follows immediately from Lemmas 41 and 39 and the exact sequence
of Borel–Moore homology groups with coefficients in ±Z for the pair
(B(W, 3), (B(W, 3) \ B̃(W, 3))).

7.2. Term Θ1 \ Θ0 of inverse filtration. This term is covered by
one Ā-block where A = (3, 2). It is the space of a fiber bundle, whose

base B̃((3, 2)) is the space B(3, 2) ≡ B(C1, 3) × W from which
something is removed, namely the set of pairs

(14)
(
{α, β, γ} ∈ B(C1, 3); {δ, ε} ∈ W

)
such that the system of conditions

(15) f(α) = f(β) = f(γ); f(δ) = f(ε)

on the map f ∈ K defines a subspace of codimension < 3k in K.
It is easy to see that the last set consists of pairs (14) not satisfying
condition 1) of Lemma 30, i.e. such that both points δ ̸= ε belong to
the set {α, β, γ}. Denote this set by ≜.

For any point Γ ∈ (B(C1, 3) × W)\ ≜ of the form (14), the cor-
responding subspace L(Γ) ⊂ K defined by conditions (15) has codi-
mension 3k, and the simplex ∆(Γ) ⊂ CW is spanned by four points
Φ({α, β}), Φ({α, γ}), Φ({β, γ}), and Φ({δ, ε}). The entire boundary
of this simplex lies in the union of term Λ2 of main filtration and term
Θ0 of the inverse filtration of Λ3 \ Λ2. Thus, the space Θ1 \ Θ0 of
the latter filtration is swept out by the interiors of these 3-simplices.
By the Thom isomorphism, we have

(16) H̄N(Θ1 \Θ0) ≃ H̄N−3((B(C1, 3)×W)\ ≜ ,±Z),
where ±Z is the local system on the product B(C1, 3) × W lifted
from the eponymous local system on its first factor B(C1, 3). Let us
calculate right-hand groups in (16).

By Lemma 39 and Künneth formula, the group

H̄i(B(C1, 3)×W,±Z)
is equal to Z2 for i = 9, to Z3 for i = 8, and is trivial for all other
i.
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Lemma 42. 1) The group H̄i( ≜ ,±Z) is isomorphic to Z⊕Z2 for
i = 5, to Z for i = 4, and is trivial for all other i.

2) A free generator of the group H̄5( ≜ ,±Z) can be realized by the
fundamental class of the 5-dimensional submanifold in ≜ consisting
of pairs (14) such that δ ̸= ε, {δ, ε} is a subset of {α, β, γ}, and
the point {α, β, γ} \ {δ, ε} lies in the interval (δ, ε) ⊂ C1.

3) For a generator of the group H̄4( ≜ ,±Z) we can take the sub-
variety of the previous cycle, consisting of such configurations where
interval (δ, ε) is vertical.

4) The group H2( ≜ ,±Z) is generated by the fundamental cycle of
the submanifold in ≜ consisting of points (14) such that α = δ = 0,
and the points β = ε and γ belong to the circles of radii 1 and 1/2
respectively centered at the origin in C1.

5) The group H1( ≜ ,±Z) is generated by the 1-cycle consisting
of points (14) such that α = δ = 0, β = ε = 1, and the point γ
belongs to the circle of radius 1/2 with center at the origin in C1.

Proof. ≜ is the space of a fiber bundle with base B(C1, 2) ∼
C1 × (0,∞) × RP 1, its fiber over any two-configuration {δ, ε} is
equal to the space C1 \ {δ, ε} of choices of the point {α, β, γ} \{δ, ε}.
The rest of the calculation of its homology groups is elementary. It is
also easy to check that four submanifolds indicated in statements 2)—
5) as generators of corresponding homology groups are ±Z-orientable,
and the intersection indices of these manifolds of complementary di-
mensions in ≜ are equal to ±1. □

The structure of groups H̄i((B(C1, 3) ×W)\ ≜ ,±Z) now follows
from the exact sequence of the pair ((B(C1, 3) × W),≜ ). Namely,
these groups are equal to Z2 for i = 9, to Z3 for i = 8, to Z2 ⊕Z
for i = 6, and to Z for i = 5. Assertion of Theorem 40 about the
column j = 1 follows immediately from this calculation and identity
(16).

The statement of Theorem 40 about the differential ∂1 : E1
1,11 → E1

0,11

can be proved in the same way as the statement of Theorem 38 about
the map ∂1 : E1

1,6 → E1
0,6.

7.3. Term Θ2 \ Θ1 of inverse filtration. The only symbol A of
complexity 3 and defect 2 is (4), so the part of Λ3\Λ2 not covered by
the above described subset Θ1 is covered by the (4)-block. This block
is the space of a fiber bundle over the space B(C1, 4) of quadruples of
distinct points in C1. Its fiber over such a point Γ = {α, β, γ, δ} ⊂ C1
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is the 5-dimensional simplex ∆(Γ), six vertices Φ({α, β}), Φ({α, γ}),
etc. of which correspond to two-element subsets of the set {α, β, γ, δ}.
According to Lemma 35, the part of such a simplex ∆(Γ) that lies in
Θ2 \Θ1 is the union of the interior points of its faces corresponding to
two-connected simple graphs on four vertices α, β, γ and δ. Namely,
these are all graphs with six or five edges, and all three graphs with
four edges that define a 4-cycle. Thus, term Θ2 \ Θ1 is the space
of a fiber bundle over B(C1, 4), whose fiber over the configuration
{α, β, γ, δ} ∈ B(C1, 4) is the union of interior points of all faces of the
corresponding 5-simplex, which correspond to two-connected graphs on
four vertices. An elementary calculation (see [13]) gives us the following
specialization of Theorem 34.

Lemma 43. The Borel–Moore homology group of such a fiber is non-
trivial only in dimension 4 and is isomorphic to Z2 : it is generated
by the classes of arbitrary two of the three chains

(17) β

α

γ

δrr rr�
�
@

@ −
β

α

γ

δrr rr�
�
@

@
, β

α

γ

δrr rr@
@ −

β

α

γ

δrr rr�
�

, β

α

γ

δrr rr�
�
@

@ −
β

α

γ

δrr rr�
�
@

@

(where the orientations of the faces represented by these graphs are
determined by the order α < β < γ < δ). The sum of all these
three chains is equal to the boundary of entire simplex (depicted by the
complete graph). □

Remark 44. There is an important one-to-one correspondence be-
tween these three basic chains and matchings in the set {α, β, γ, δ}:
say, the chain (17) containing graphs with missing edge (α, γ) or
(β, δ) corresponds to the matching (α, γ)(β, δ).

Let A2 be the quotient lattice of Z3 along the diagonal sublattice
consisting of the points (t, t, t). Denote by {A2} the representation of
the braid group Br4 ≡ π1(B(C1, 4)) in A2 defined as the composition

(18) Br4 → S(4) → S(3) → Aut(A2),

where the first homomorphism takes any braid to the corresponding
permutation of points of a distinguished 4-configuration, the second
one takes any rotation of a tetrahedron to the corresponding permu-
tation of pairs of its opposite edges, and the last one is the standard
action of S(3) in A2 by permutations of coordinates in Z3.

Lemma 45. H̄N(Θ2\Θ1) ≃ H̄N−4(B(C1, 4), {A2}) for any natural N .

Proof. It is easy to check that any permutation of points α, β, γ, δ acts
on the set of cycles (17) in exactly the same way as the automorphism
of A2 obtained from this permutation by the composition of two last
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Table 4

i 8 7 6 5

H̄i(B(C1, 4),Z) Z Z 0 Z2

H̄i(B(C1, 4), {̂A2}) Z Z2 Z⊕ Z2 (Z2)
2

H̄i(B(C1, 4), {A2}) 0 Z Z⊕ Z2 Z2

arrows in (18) acts on the images of the basic vectors of Z3 under the
factorization by the diagonal. Namely, any transposition of some two of
these four points preserves the cycle containing the graph with missing
edge connecting these points, and permutes two other generators. □

Let also {̂A2} be a representation of Br4 in Aut(Z3) defined by
a composition analogous to (18), in which the last homomorphism is
the action by permutations on the whole Z3 and not on its quotient
lattice A2.

Theorem 46. All non-trivial groups H̄i(B(C1, 4),Z), H̄i(B(C1, 4), {̂A2})
and H̄i(B(C1, 4), {A2}) are as shown in Table 4.

The column j = 2 of Table 3 (right) follows immediately from
Lemma 45 and the last row of Table 4.

Proof of Theorem 46. The second row of Table 4 is proved in [1].
Consider the decomposition of the space B(C1, 4) into open cells

used in [6]. Namely, we denote by
�
 �	r r r r the cell consisting of con-

figurations, all four points of which have different real parts, and by�
 �	rr r r the 7-dimensional cell (called e(2, 1, 1) in [6]) consisting of con-
figurations in which only the two leftmost points have equal real parts.

Analogously, denote by
�
 �	r rr r , �
 �	r r rr , �
 �	rrr r , �
 �	rr rr , �
 �	r rrr , and

�� ��rrrr the cells
called in [6] respectively e(1, 2, 1), e(1, 1, 2), e(3, 1), e(2, 2), e(1, 3), and

e(4). In particular,
�� ��rrrr is the only 5-dimensional cell of this decom-

position: it consists of configurations, all whose points have equal real
parts.

H̄∗(B(C1, 4), {̂A2}) is the homology group of a 3-fold covering over
B(C1, 4). The decomposition of this covering space into cells is lifted

from the previous one: the preimage of each of our cells
�
 �	r r r r , �
 �	rr r r ,�
 �	r rr r , . . . ,

�� ��rrrr consists of three cells, the notation of which is ob-
tained from that of the original cell by adding a subscript equal to
2, 3 or 4. Namely, these three cells are in one-to-one correspondence
with matchings of points of an arbitrary 4-configuration {α, β, γ, δ}
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from the original cell. We order lexicographically the points of any
such 4-configuration: first by increase of their real parts and then by
decrease of imaginary parts. This order is continuous along any of our
cells. Then, given a cell augmented by a matching of four points of
corresponding 4-configurations, we mark it with the subscript equal to
the number of the point matched with the first one.

Definition 47. The standard orientation of any our cells is determined
by our lexicographic order of points of configurations from this cell and
is given by the following differential form:

d(the smallest real value of its points)∧
∧d(the next smallest real value) ∧ · · · ∧ d(the largest real value)∧
∧d(the imaginary part of the first ordered point) ∧ · · · ∧
∧d(the imaginary part of the fourth point),

cf. [14].

It is easy to calculate that differentials in the arising complex are as
follows:

∂
( �
 �	r r r r

2

)
= −

�
 �	r rr r2 +�
 �	r rr r3
∂
( �
 �	r r r r

3

)
=

�
 �	rr r r3 −�
 �	rr r r4 −�
 �	r rr r3 +�
 �	r rr r2 +�
 �	r r rr3 −�
 �	r r rr4
∂
( �
 �	r r r r

4

)
=

�
 �	rr r r4 −�
 �	rr r r3 +�
 �	r r rr4 −�
 �	r r rr3
∂
(�
 �	rr r r2) =

�
 �	rrr r2 − �
 �	rrr r3 +�
 �	rrr r4
∂
(�
 �	rr r r3) =

�
 �	rrr r3 − �
 �	rr rr3 + �
 �	rr rr4
∂
(�
 �	rr r r4) =

�
 �	rrr r3 − �
 �	rr rr4 + �
 �	rr rr3
∂
(�
 �	r rr r2) =

�
 �	rrr r3 − �
 �	r rrr 3
∂
(�
 �	r rr r3) =

�
 �	rrr r3 − �
 �	r rrr 3
∂
(�
 �	r rr r4) =

�
 �	rrr r4 − �
 �	rrr r3 + �
 �	rrr r2 − �
 �	r rrr 4 + �
 �	r rrr 3 − �
 �	r rrr 2
∂
(�
 �	r r rr2) = −

�
 �	r rrr 2 + �
 �	r rrr 3 − �
 �	r rrr 4
∂
(�
 �	r r rr3) =

�
 �	rr rr3 − �
 �	rr rr4 − �
 �	r rrr 3
∂
(�
 �	r r rr4) =

�
 �	rr rr4 − �
 �	rr rr3 − �
 �	r rrr 3
∂
(�
 �	rrr r2) =

�� ��rrrr 3 − �� ��rrrr 4
∂
(�
 �	rrr r3) = 0

∂
(�
 �	rrr r4) =

�� ��rrrr 4 − �� ��rrrr 3
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∂
(�
 �	rr rr2) = 2

(�� ��rrrr 2 − �� ��rrrr 3 + �� ��rrrr 4
)

∂
(�
 �	rr rr3) = 2

�� ��rrrr 3
∂
(�
 �	rr rr4) = 2

�� ��rrrr 3
∂
(�
 �	r rrr 2) =

�� ��rrrr 3 − �� ��rrrr 4
∂
(�
 �	r rrr 3) = 0

∂
(�
 �	r rrr 4) =

�� ��rrrr 4 − �� ��rrrr 3
The statement of Theorem 46 concerning groups H̄i(B(C1, 4), {̂A2})

follows immediately from these formulas. Namely, the group H̄8 = Z
is generated by the cycle

�
 �	r r r r
2 +

�
 �	r r r r
3 +

�
 �	r r r r
4 , the group

H7 = Z2 by cycles

(19)
�
 �	rr r r2+�
 �	rr r r3+�
 �	rr r r4−�
 �	r rr r2−�
 �	r rr r3−�
 �	r rr r4+�
 �	r r rr2+�
 �	r r rr3+�
 �	r r rr4

and

(20)
�
 �	rr r r3 −�
 �	r rr r3 +�
 �	r r rr3 ;

a free generator of the group H̄6 = Z ⊕ Z2 can be realized by the

cycle
�
 �	rrr r2 −�
 �	r rrr 2 or

�
 �	rrr r4 −
�
 �	r rrr 4, and its element of order 2 by�
 �	rrr r3 ∼

�
 �	r rrr 3; finally the group H̄5 = (Z2)
2 is generated by arbitrary

two of the three cycles
�� ��rrrr 2 ,

�� ��rrrr 3 and
�� ��rrrr 4 .

It is easy to calculate (see also [14]) that groups H̄i(B(C1, 4),Z) of

the second row of Table 4 are generated by the following cycles:
�
 �	r r r r

for i = 8,
�
 �	rr r r −

�
 �	r rr r +
�
 �	r r rr for i = 7, and

�� ��rrrr for i = 5.
Consider now the exact sequence of all homology groups studied in

Theorem 46, defined by the short exact sequence of coefficients Z →
{̂A2} → {A2}. Its map H̄i (B(C1, 4),Z) → H̄i(B(C1, 4), {̂A2}) is
monomorphic for any i. Namely, it is an isomorphism for i = 8, its
image for i = 7 is generated by cycle (19), and for i = 5 by cycle�� ��rrrr 2 −

�� ��rrrr 3 +
�� ��rrrr 4. This implies the statement of Theorem 46 on the

structure of groups H̄i (B(C1, 4), {A2}). □

7.4. Homomorphism ∂1 : E1
2,8 → E1

1,8. By Lemma 45, the source

group E1
2,8 of this homomorphism is naturally isomorphic to the group

H̄6(B(C1, 4), {A2}). According to the previous calculation, we can

take the cycle
�
 �	rrr r2 −

�
 �	r rrr 2 for its free generator.
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Figure 2. Chain
�
 �	rrr r 2

By (16), the target group E1
1,8 of this homomorphism is isomorphic

to the group H̄6((B(C1, 3)×W)\ ≜ ,±Z). By exact sequence of the
pair (B(C1, 3)×W, ≜) (see §7.2), any element of this group is char-
acterized by the class of its boundary in the group H̄5( ≜ ,±Z). By
Lemma 42, the last class modulo torsion is characterized by its intersec-
tion index in the manifold ≜ with the one-dimensional cycle described
in statement 5) of this lemma. Let us calculate this intersection index

for the boundary of the cycle ∂1
({�
 �	rrr r2 −�
 �	r rrr 2}).

Consider first the contribution of the boundary of the chain
{�
 �	rrr r2}.

The cell
�
 �	rrr r ⊂ B(C1, 4) consists of configurations as in Fig. 2 (left),

i.e. with coinciding three leftmost real values of the corresponding four
complex numbers. Recall that we denote these numbers by α, β, γ, δ
in such a way that Re α = Re β = Re γ < Re δ, Im α > Im β > Im γ.

Subscript 2 in
�
 �	rrr r2 indicates the cell over �
 �	rrr r in the 3-fold covering

of B(C1, 4) characterized by matching (α, β)(γ, δ) of these points.
This cell corresponds to a 10-dimensional chain in Θ2 \Θ1, which is a

fiber bundle over our cell
�
 �	rrr r . Its fiber over the configuration shown

in Fig. 2 (left) is a chain in the complex of graphs with vertices α, β, γ, δ
(see Lemma 43), namely the difference of two 4-dimensional simplices
represented by graphs obtained from the complete graph by removing
edges [α, β] and [γ, δ], see Fig. 2 (right). The boundary of this chain
in Θ1 \ Θ0 is the algebraic sum of eight chains corresponding to the
three-dimensional boundary faces of these four-dimensional simplices,
depicted by not two-connected graphs, see top row of Fig. 3.

Each of these chains is represented by a map to Θ1 \ Θ0 of the

space of some fiber bundle over the cell
�
 �	rrr r , whose fiber over the

configuration Γ = {α, β, γ, δ} ∈
�
 �	rrr r is the corresponding three-

dimensional face of the 5-simplex ∆(Γ). This map takes this face
isomorphically to a three-dimensional simplex which is the fiber of the
bundle Θ1 \ Θ0 → (B(C1, 3) × W)\ ≜ over a certain point of this
base space, depending on both the configuration {α, β, γ, δ} and the
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Figure 3. Boundary of cell
�
 �	rrr r 2 in Θ1 \Θ0 and its

boundary over ≜

mapped face. For example, the first picture in the top row of Fig. 3
consists of a triangle with vertices β, γ, δ and the additional edge
(α, δ), therefore the corresponding face of the 5-simplex over the con-
figuration {α, β, γ, δ} ∈ B(C1, 4) goes to the fiber over the point
{β, γ, δ} × {α, δ} ∈ B(C1, 3)×W.

Boundary points in ≜ of either of these eight chains are approached

in the degeneration of underlying configurations {α, β, γ, δ} ∈
�
 �	rrr r ,

when the only 1-valent vertex of the corresponding graph tends to some
other vertex (not joined with it by an edge). All these degenerations
are shown in the bottom row of Fig. 3.

The limit configuration obtained by such a degeneration can belong
to the basic 1-cycle of the group H1(≜,±Z) indicated in statement 5)

of Lemma 42 only if it is the configuration
rr rr r
�

�� or rr rr rHHH with vertices
of triangles at the points 0 (right angle), 1 and ∓i/2. These points
appear only in three pieces shown in the bottom row of Fig. 3: the first,
third and fourth; each of them defines a transversal intersection of the
corresponding cycles and makes contribution ±1 to the intersection
index.

Similar considerations with the summand
�
 �	r rrr 2 of our generator of

the group E1
2,8 give us no boundary components in Θ1 that might

contribute to the intersection index with this 1-cycle. Thus, this index
is an odd number, and the last statement of Theorem 40 is proved. □

8. Estimates in the stable spectral sequence

Proposition 48. For any natural ρ in stable range (i.e. satisfying
(6)) and any j ∈ {0, 1, . . . , ρ− 1}, the Borel–Moore homology group

H̄i(Θj \Θj−1)
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of term Θj \Θj−1 of the inverse filtration of term Λρ \ Λρ−1 of main
filtration of Λ (or, which is the same, group E1

j,i−j of the auxiliary
spectral sequence defined by this inverse filtration) is trivial for all i >
5ρ− j − 1.

Proof. By Lemma 35 and Corollary 36, Θj\Θj−1 is the union of spaces
associated with sets A such that |A|−#(A) = ρ and j = |A|−2#(A).
Since ρ is in stable range, each of these spaces is a fiber bundle,
whose base is 2|A|-dimensional, and the Borel–Moore homology group
of the fiber is non-trivial only in the dimension 2|A| − 3#(A)− 1 (see
Corollary 36). Therefore the Borel–Moore homology group of any such
space is trivial in dimensions greater than 4|A|−3#(A)−1 ≡ 5ρ−j−1.
□

Lemma 49 (see e.g. [5]). If ρ > 1 then the group H̄i(B(W, ρ),±Z) ≡
H̄i(B(R4, ρ),±Z) is finite for any i, trivial for i = 4ρ, and isomor-
phic to Z2 for i = 4ρ− 1. □

Proposition 50. For any ρ > 1 in the stable range, the Borel–Moore
homology group H̄i(Θ0) of term Θ0 of Λρ \ Λρ−1 is

a) trivial for i > 5ρ− 2,
b) isomorphic to Z2 for i = 5ρ− 2, and
c) finite for i > 5ρ− 6.

Proof. This term contains only one A-block, where A = (2, 2, . . . , 2)
(ρ deuces). Similarly to §7.1,

H̄i(Θ0) ≃ H̄i−(ρ−1)(B̃(W, ρ),±Z),

where B̃(W, ρ) is obtained from the configuration space B(W, ρ) by
removing a subset of complex codimension ≥ 3 (consisting of non-
regular Ā-configurations). All statements of the proposition follow
from the homological exact sequence of the pair (B(W, ρ), B(W, ρ) \
B̃(W, ρ)), Lemma 49 and dimensional restrictions on homology groups
of the removed subset. □

Proposition 51. For any ρ > 1 in the stable range, the Borel–Moore
homology group of term Θ1 \Θ0 of Λρ \ Λρ−1 is

a) trivial in dimensions exceeding 5ρ− 3,
b) finite in dimensions exceeding 5ρ− 6.

Proof. The unique A-block covering this term is {3, 2, 2, . . . , 2} (ρ−2
deuces). This term is the space of a fiber bundle with 2(2ρ − 1)-

dimensional base B̃(A) and fibers equal to ρ-dimensional simplices.
This base is orientable, but the orientation of fibers is violated by some
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loops in the base, therefore the homology group in top dimension 5ρ−2
is trivial, which implies statement a).

The base space B̃(A) is the direct product B(C1, 3)×B(W, ρ−2),
from which a subset ¥ of complex codimension 2 is removed. The
local system on this base formed by ρ-dimensional homology groups
of fibers is isomorphic to one induced from the tensor product of local
systems ±Z on the factors B(C1, 3) and B(W, p− 2). Denote the
last tensor product by .ג By the Künneth formula and Lemma 39,
the homology group of the product B(C1, 3)×B(W, ρ−2) with these
coefficients is finite, so by Thom isomorphism and exact sequence of
pair ((B(C1, 3)×B(W, ρ− 2)),¥) we get isomorphism

(21) H̄i(Θ1 \Θ0,Q) ≃ H̄i−ρ(B̃(A), (Q⊗ג ≃ H̄i−(ρ+1)(¥, .(Q⊗ג

The dimension of ¥ is equal to 4ρ − 6, which implies the triviality
of groups (21) for all i > 5ρ− 5. To also overcome the top dimension
5ρ− 5, note that a Zariski open subset of ¥ coincides with a Zariski
open subset of the direct product of the space ≜ considered in §7.2
and configuration space B(W, ρ − 2). This open set is orientable,
but the restriction to it of the one-dimensional local system ג is not
constant, so the group (21) with i = 2(2ρ − 3) + (ρ + 1) ≡ 5ρ − 5 is
also trivial. □

Proposition 52. For any ρ > 3 in the stable range,
a) Borel–Moore homology group H̄i(Θ2 \ Θ1) of term Θ2 \ Θ1 of

inverse filtration of Λρ \ Λρ−1 is trivial if i > 5ρ− 4;
b) if ρ > 4, then this group is finite for any i > 5ρ− 6;
c) in the case ρ = 4, H̄16(Θ2 \Θ1) ≃ Z.

Proof. This term Θ2 \ Θ1 is covered by two A-blocks correspond-
ing to A = {4, 2, 2, . . . , 2} (ρ − 3 deuces) and A = {3, 3, 2, . . . , 2}
(ρ − 4 deuces). The first A-block is a fiber bundle over the base

B̃(A) equal to the product B(C1, 4) × B(W, ρ − 3), from which a
subset of complex codimension 2 is removed. By Theorem 34, the
Borel–Moore homology group of any of its fibers is isomorphic to Z2

in dimension ρ + 1 and is trivial in all other dimensions. The local
system on B̃(A) formed by these homology groups of fibers is iso-
morphic to the tensor product of the local systems induced from local
systems {A2} and ±Z on the factors of B(C1, 4) × B(W, ρ − 3).
The estimates of Proposition 52 applied exclusively to the homology
groups of this A-block follow now from the exact sequence of the pair
(B(C1, 4) × B(W, ρ − 3), {the removed set}), statements of Theorem
46 and Lemma 49 on homology of factors, the Künneth formula, and
dimensional restrictions on the homology groups of the removed set.
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In the case of the A-block with A = (3, 3, 2, ..., 2), the proof is sim-
ilar, with Theorem 46 replaced by Lemma 39 and additional account-
ing of the factorization by the permutation of two sets of cardinality
3 of Ā-configurations (which does not increase the rational homology
groups). □

8.1. Proof of statement 4 of Theorem 23. According to Proposi-
tions 50 (c), 51 (b), 52 (a), and 48, the following groups E1

j,q of the
spectral sequence defined by the inverse filtration of the term Λ4 \ Λ3

are finite: E1
0,q for q > 14, E1

1,q for q > 13, E1
2,q for q > 14, and

E1
j,q for q > 19− 2j and all j. By Proposition 52 (c), group E1

2,14 is
equal to Z.

Thus all infinite groups E1
j,q with j + q ≥ 16 are only E1

2,14 ≃ Z
and possibly E1

3,13 (which is presumably also finite). Both differentials

∂1 : E1
2,14 → E1

1,14 and ∂2 : E2
2,14 → E2

0,15 act into finite groups.
Therefore group

H̄16(Λ4 \ Λ3) ≃ H̄2D−8k+16(σ4 \ σ3) ≡ E1
4,2D−8k+12

is infinite. By (5), this implies statement 4 of Theorem 23. □

8.2. Proof of statement 5 of Theorem 23. a) By Propositions 48
(applied to all j ≥ 1) and 50 (a), all groups E1

j,q with j + q > 5ρ− 2
of the spectral sequence defined by the inverse filtration of any term
Λρ \ Λρ−1 are trivial. Hence the groups

(22) H̄i(Λρ \ Λρ−1) ≃ H̄2D−2kρ+i(σρ \ σρ−1) ≡ E1
ρ,2D−(2k+1)ρ+i

are also trivial for i > 5ρ− 2.
b) By Propositions 48 (applied to all j ≥ 2), 50 (b) and 51 (a),

the only such non-trivial group with j + q = 5ρ − 2 is E1
0,5ρ−2 ≃ Z2.

Therefore the group

H̄5ρ−2(Λρ \ Λρ−1) ≃ H̄2D−(2k−5)ρ−2(σρ \ σρ−1) ≡ E1
ρ,2D−(2k−5)ρ−2

is isomorphic to Z2.
c) By Proposition 48 (applied to all j ≥ 3), 50 (c), 51 (b) and 52

(b), all such groups with j + q > 5ρ− 4 are finite. Therefore groups
(22) are also finite for i > 5ρ− 4.

Transformation (5) turns these three facts into three assertions of
statement 5 of Theorem 23. □

9. Two problems

1. Find an interpretation and a combinatorial formula for the basic
element of stable group H6k−12(P (∞, k) \Σ,Q) (at least for k = 3).
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2. Calculate the multiplication

H2k−5(P (∞, k)\Σ,Q)⊗H6k−12(P (∞, k)\Σ,Q) → H8k−17(P (∞, k)\Σ,Q).
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