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EULER CHARACTERISTICS OF

COLLAPSING ALEXANDROV SPACES

TADASHI FUJIOKA

Abstract. We prove that the Euler characteristic of a collapsing Alexandrov
space (in particular, a Riemannian manifold) is equal to the sum of the prod-
ucts of the Euler characteristics with compact support of the strata of the
limit space and the Euler characteristics of the fibers over the strata. This was
conjectured by Semyon Alesker.

1. Introduction

In this paper we consider the following problem. We fix an upper bound n for
dimension and a lower bound κ for sectional curvature.

Problem 1.1. Let X be a k-dimensional compact Alexandrov space, where k ≤ n.
Suppose µ = µ(X) > 0 is small enough and let M be an n-dimensional Alexandrov
space (in particular, a Riemannian manifold) that is µ-close to X with respect
to the Gromov-Hausdorff distance. Describe the topology of M in terms of the
geometry of X .

An Alexandrov space is a metric space with a lower sectional curvature bound,
introduced by Burago-Gromov-Perelman [6]. The motivation for the above prob-
lem stems from the well-known fact that the family of n-dimensional Riemannian
manifolds with sectional curvature ≥ κ and diameter ≤ D is precompact in the
Gromov-Hausdorff topology. The limit objects are Alexandrov spaces with curva-
ture ≥ κ and dimension ≤ n. More generally, the family of Alexandrov spaces
with curvature ≥ κ, diameter ≤ D, and dimension ≤ n is compact in the Gromov-
Hausdorff topology. Therefore, in principle, the solution to the above problem
allows us to understand the topology of spaces in these (pre)compact families by
covering them by a finite number of neighborhoods of limit spaces.

In the case k = n, Perelman’s stability theorem [20] (cf. [15]) solves the above
problem completely, that is, M is homeomorphic to X . Hence we will consider
the case k < n, called collapse. Although collapsing in low dimensions has been
well studied ([25], [27], [18], [3]), so far there is no theory in general dimensions.
The few exceptions are special cases when X satisfies some regularity conditions
([26], [22]), where some fibration structures of M over X are obtained. In general,
it is expected that M admits some singular fibration structure over X , where the
singular fibers arise over the singular strata of X . See also [7] and the references
therein for collapsing under two-sided bounds on sectional curvature.
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Recently Alesker [1] proposed some conjectures on collapsing Riemannian man-
ifolds and Alexandrov spaces in terms of their intrinsic volumes (also known as
Lipschitz-Killing curvatures). For a closed n-dimensional Riemannian manifold M ,
the i-th intrinsic volume, denoted by Vi(M) (0 ≤ i ≤ n), is a geometric quantity
defined as follows (see [1] for the precise definition and references). We first embed
M isometrically into Euclidean space (by the Nash embedding, for example) and
consider the volume of its ε-neighborhood. Then it is a polynomial in ε ≪ 1, and
its coefficients, after appropriate normalization, turn out to be independent of the
embedding, which are called the intrinsic volumes of M . In fact they can be defined
directly in terms of integrals of the Riemann curvature tensor of M . For example,
Vn(M) is the volume of M , V0(M) is the Euler characteristic of M , and Vn−2(M)
is proportional to the integral of the scalar curvature of M (and Vi(M) vanishes if
n− i is odd).

The following is a brief summary of part of Alesker’s conjecture.

Conjecture 1.2 (Alesker [1]). Let Mj be a sequence of n-dimensional Riemann-
ian manifolds with sectional curvature ≥ κ. Suppose Mj converges to a compact
Alexandrov space X .

(1) If Mj does not collapse, then limj→∞ Vi(Mj) exists.
(2) If Mj collapses, then

(a) there is a subsequence such that limj→∞ Vi(Mj) exists;
(b) the limit value will be written as

∑

E∈E

F (E) · Vi(E),

where E denotes the set of the strata of X , F is an integer valued
function defined on E , and Vi(E) is the “i-th intrinsic volume” of E.

Here the strata of X mean (the main parts of) primitive extremal subsets in
the sense of Perelman-Petrunin [23]. This stratification reflects both the geometric
and topological structures of Alexandrov spaces, and is very closely related to the
collapsing phenomena. Note that the number of such strata is finite and that the
above quantity Vi(E) has not yet been defined. It also should be mentioned that
the existence of the expected function F was stated in [1, Theorem 4.6] as an
unpublished result of Petrunin. See [1] for more details and further conjectures.

At present only the following results are known for Conjecture 1.2.

• For Vn, the volume: the claim follows from the volume convergence theorem
of Burago-Gromov-Perelman [6, Theorem 10.8].

• For V0, the Euler characteristic: (1) follows from Perelman’s stability the-
orem [20] (cf. [15]) and (2a) follows from Gromov’s Betti number theorem
[14] (cf. [17], [28]).

• For Vn−2, the total scalar curvature: (1) was recently proved by Lebedeva-
Petrunin [16, Subcorollary 1.3] and (2a) was proved by Petrunin [24].

• The special case of a Riemannian submersion was verified by Alesker [2].
• The 2-dimensional case was verified by Alesker-Katz-Prosanov [3].

In this paper we prove (2b) of Conjecture 1.2 for the 0-th intrinsic volume, i.e.,
the Euler characteristic, not only for Riemannian manifolds but also for Alexandrov
spaces. We denote by χ the Euler characteristic and by χc the Euler characteristic
with compact support, where the coefficient field of singular cohomology is fixed
and omitted.
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Theorem 1.3. Let X and M be Alexandrov spaces as in Problem 1.1. Then

χ(M) =
∑

E∈E

χc(E̊) · χ(FE),

where E denotes the set of primitive extremal subsets of X, E̊ is the main part of
E, and FE is a regular fiber over E in M (see Section 2 for the definitions).

For a regular (= nonsingular) fibration, the Euler characteristic of the total space
splits into the product of those of the fiber and the base space. Therefore, the above
formula can be interpreted as capturing the expected singular fibration structure
of M over X , at least at the level of the Euler characteristic.

Remark 1.4. If k = n, then all the regular fibers are contractible. This follows
from the parametrized version of Perelman’s stability theorem [20, Theorem 4.3]

(cf. [15, Theorem 7.8]). In particular we have χ(X) =
∑

E∈E χc(E̊).

Remark 1.5. If k < n and M is a Riemannian manifold with uniform two-sided
bounds on sectional curvature (independent of the Gromov-Hausdorff distance µ),
then the Euler characteristic of M vanishes. This follows from [8, Proposition 1.5]
and [9, Theorem 0.1].

Remark 1.6. Gromov’s Betti number theorem [14] and its generalization to Alexan-
drov spaces ([17], [28]) tell us that χ(M) is uniformly bounded in terms of dimen-
sion, a lower curvature bound, and an upper diameter bound. As we will see later,
this also holds for χ(FE) in the above formula. In particular, if Mj is a sequence
of Alexandrov spaces of fixed dimension that converges to X , then after passing
to a subsequence, one can assume that all the Euler characteristics appearing in
the formula of Theorem 1.3 are independent of the sequence. This demonstrates
Conjecture 1.2(2b). See Appendix A for details.

This paper is actually a continuation (or addendum) of [11], where the author
proved Theorem 1.3 in the case when X has no proper extremal subsets. Indeed
the geometric ingredients needed for the proof have already been obtained in the
previous paper, and what we do here is a purely topological argument. In [11] the
author combined Perelman’s Serre fibration theorem [22] with the good covering
method developed by Mitsuishi-Yamaguchi [19]. This makes it possible to compute
the cohomology of M via a spectral sequence associated with a presheaf on a good
covering of X . This presheaf is in a sense constant on the strata of X , and hence
the Euler characteristic splits on each stratum as in the case of a regular fibration.
This reduces the computation of the Euler characteristic of M to that of X in terms
of its strata. The latter is done with the help of another result of the author [12],
which showed that each stratum has a deformation retract neighborhood.

Organization. In Section 2 we fix notation and recall some results from [11] and
[12]. In Section 3 we prove Theorem 1.3. In Appendix A, to complete the proof
of Alesker’s conjecture, we construct the integer valued function F on the strata
of the limit space asserted in Conjecture 1.2(2b). As already mentioned, this is an
unpublished result of Anton Petrunin.

Acknowledgment. I would like to thank Professor Semyon Alesker for his interest
in my work.
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2. Preliminaries

The reader is assumed to be familiar with the theory of Alexandrov spaces and
extremal subsets (see [11, Section 3] for a brief summary). Here we fix notation
and recall some results from [11] and [12].

Let X and M be Alexandrov spaces as in Problem 1.1 that are µ-close in the
Gromov-Hausdorff distance. Note that X is a fixed space whereas M is a variable
space depending on the choice of µ. We fix a µ-approximation between X and M
and use the hat symbol ˆ to indicate lifts from X to M . For example, for p ∈ X ,
we denote by p̂ ∈ M a point that is µ-close to p under this approximation.

Recall that the distance function from p ∈ X is called regular at x ∈ X \ {p}
if ∠̃pxy > π/2 for some y ∈ X , where ∠̃ denotes the comparison angle. Note that
there exists a neighborhood of p on which the distance function from p is regular
except at p. We denote by B̄(p, r) the closed r-ball around p.

Definition 2.1. Let p ∈ X and let r > 0 be such that the distance function from
p is regular on B̄(p, r) \ {p}. We call such a pair (p, r) fiber data on X . We say
that B̄(p̂, r) is a regular fiber over p in M , provided µ ≪ r.

Remark 2.2. The choice of µ will be determined in the proof of each statement.

Remark 2.3. Fiber data is defined on a fixed space X , whereas its regular fiber
depends on a variable space M .

Remark 2.4. One can also use the open ball B(p̂, r) instead of the closed ball to
define a regular fiber. Indeed, they are homotopy equivalent by Perelman’s fibration
theorem ([20, Theorem 1.4.1], [21, Theorem 1.4(B)]).

Let E be an extremal subset of X (see [11, Section 3C] for extremal subsets).
By definition, E is closed under the gradient flow of any semiconcave function. The
family of extremal subsets is closed under taking union, intersection, and closure of
difference. The number of extremal subsets in X is finite. In fact, it is uniformly
bounded in terms of dimension, a lower curvature bound, and an upper diameter
bound ([1, Theorem 4.5], [10, Theorem 1.1(1)]).

Recall that E is called primitive if it cannot be represented as a union of two
proper extremal subsets. For a primitive extremal subset E, its main part E̊ is
defined as the relative complement of all proper extremal subsets in E. Note that

p ∈ E̊ if and only if E is the minimal extremal subset containing p, that is, the
intersection of all extremal subsets containing p, which is primitive. It is known
that E̊ is a topological manifold. Therefore the main parts of all primitive extremal
subsets define a stratification of X ([23, Section 3.8]).

The next lemma shows that regular fibers are constant on each stratum of X .

Lemma 2.5 ([11, Lemma 5.11]). Let E be a primitive extremal subset of X. Let

(p, r) and (q, s) be fiber data on X such that p, q ∈ E̊. If µ is small enough, then
the regular fibers B̄(p, r) and B̄(q, s) are homotopy equivalent.

Note that the choice of µ depends on r and s, and hence on p and q. This lemma
allows us to define the notion of a regular fiber over E up to homotopy equivalence,
which appeared in Theorem 1.3. Strictly speaking, we choose some fiber data (p, r)

such that p ∈ E̊ for each primitive extremal subset E of X , and then take µ to be
sufficiently small so that the conclusion of the theorem holds.
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Let {Uα}Nα=1 be a good covering of X (see [11, Section 3D] for good coverings).
Recall that each Uα is a superlevel set of a strictly concave function constructed
from distance functions. For any nonempty subset A ⊂ {1, . . . , N}, we denote by
UA the intersection of all Uα such that α ∈ A. We also denote by I the set of A
such that UA is nonempty. For any A ∈ I, UA is contractible by gradient flows
of semiconcave functions. In particular it is a good cover in the topological sense.
Since UA is defined by distance functions, it can be lifted to M , denoted by ÛA.

Let E be an extremal subset of X (not necessarily primitive). We denote by IE
the set of A ∈ I such that UA intersects E. Moreover, if E is primitive, we denote
by I̊E the set of A ∈ IE such that UA does not intersect E \ E̊. Since F = E \ E̊ is

also extremal, we see that A ∈ I̊E if and only if E is the minimal extremal subset
intersecting UA. Clearly IE is the disjoint union of I̊E and IF .

For any extremal subset E of X , the restricted cover {Uα ∩E}α∈IE is also good
in the topological sense. This follows from the fact that any gradient flow preserves
extremal subsets. Note that A = {α1, . . . , αk} ∈ IE if and only if A ∈ I and
{αi} ∈ IE for any 1 ≤ i ≤ k (see the paragraph after the proof of [11, Lemma
5.14]). In other words, IE defines a full subcomplex of I in the associated nerve,
but we will not use this fact (cf. Proposition 2.7).

The following proposition is the key ingredient in the proof of Theorem 1.3.

Proposition 2.6 ([11, Proposition 5.13]). Let E be a primitive extremal subset of

X. If A ∈ I̊E, then ÛA has the homotopy type of a regular fiber over E. More
precisely, for any fiber data (p, r) such that p ∈ E̊, if µ is small enough, ÛA is
homotopy equivalent to B̄(p̂, r).

We also use the following fact from [12].

Proposition 2.7 ([12, Theorem 1.5]). Let E and F be extremal subsets of X such
that F ⊂ E. Then any sufficiently small metric neighborhood of F in E admits a
deformation retraction to F .

The case E = X was proved in [12, Theorem 1.5]. Since the deformation retrac-
tion of this theorem was given by a gradient flow which preserves extremal subsets,
the general case follows by restricting it to E.

Remark 2.8. In Lemma 2.5 and Proposition 2.6, the homotopy equivalences can
be chosen to preserve extremal subsets of M . For example, in Lemma 2.5, if G is
an extremal subset of M , then B̄(p, r)∩G is homotopy equivalent to B̄(q, s)∩G by
the restriction of the original homotopy equivalences. This is because the fibration
theorem and the gradient flows used in the proofs preserve extremal subsets (see
[15, Section 9] for the fibration theorem). This observation allows us to generalize
Theorem 1.3 to each extremal subset of M (see Remark 3.4).

3. Proof

In this section we prove Theorem 1.3. We refer to [4, Chapter III] for the basic
theory of spectral sequences.

Proof of Theorem 1.3. Let X and M be as in Problem 1.1. Let {Uα}Nα=1 be a good
covering of X . Let Ip be the set of A ∈ I with cardinality p+ 1 (see Section 2 for
the definition of I). We denote by Sq(U) the module of singular q-cochains on U ,
where the coefficient field is fixed and omitted.
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We consider the Mayer-Vietoris double complex {
∏

A∈Ip Sq(ÛA)}p,q≥0, that is,

the rows have the Čech coboundary operator (alternating sum of restrictions) and
the columns have the singular coboundary operator. The spectral sequence associ-
ated with this double complex converges to the cohomology of M .

Let E denote the set of primitive extremal subsets in X . For each E ∈ E , we take
fiber data (pE , rE) such that pE ∈ E̊ and denote its regular fiber by FE . Note that

I is the disjoint union of I̊E for all E ∈ E (see Section 2 for the definition of I̊E).

Let I̊pE be the intersection of Ip and I̊E . Since taking homology does not change
the Euler characteristic, by looking at the E1 term of the spectral sequence, we get

χ(M) =
∑

p,q≥0

∑

A∈Ip

(−1)p+q dimHq(ÛA)

=
∑

p,q≥0

∑

E∈E

∑

A∈I̊
p

E

(−1)p+q dimHq(FE) (∵ Proposition 2.6)

=
∑

E∈E





∑

q≥0

(−1)q dimHq(FE) ·
∑

p≥0

∑

A∈I̊
p

E

(−1)p





=
∑

E∈E



χ(FE) ·
∑

p≥0

∑

A∈I̊
p

E

(−1)p



 .

Hence it remains to show that
∑

p≥0

∑

A∈I̊
p

E

(−1)p = χc(E̊).

The left hand side
∑

p≥0

∑

A∈I̊
p

E

(−1)p is the Euler characteristic of the Čech

complex C
E̊

= {
∏

A∈I̊
p

E

C(UA)}p≥0, where C(U) denotes the module of constant

functions on U . Let F = E \ E̊, which is also an extremal subset. Consider the
Čech complexes CE = {

∏

A∈I
p

E
C(UA)}p≥0 and CF = {

∏

A∈I
p

F
C(UA)}p≥0. Note

that C
E̊
is the quotient of CE by CF . Recall that {Uα∩E}α∈IE and {Uα∩F}α∈IF

are topological good covers of E and F , respectively. Hence the cohomologies of
CE and CF are isomorphic to the singular cohomology groups H∗(E) and H∗(F ),
respectively, via spectral sequences. Moreover, since the contractions of the good
covers are given by the same gradient flows, these natural isomorphisms commute
with the horizontal exact sequences in the following diagram:

−−−−→ H∗(C
E̊
) −−−−→ H∗(CE) −−−−→ H∗(CF ) −−−−→





y





y





y

−−−−→ H∗(E,F ) −−−−→ H∗(E) −−−−→ H∗(F ) −−−−→ .

Therefore H∗(C
E̊
) is isomorphic to H∗(E,F ) (see also the following Remark 3.1).

By Proposition 2.7, H∗(E,F ) is isomorphic to the cohomology group H∗
c (E̊) with

compact support. This completes the proof. �

Remark 3.1. More generally, the pair (E,F ) is homotopy equivalent to the geo-
metric realization of the pair of the nerves of the restricted good covers ({Uα ∩
E}α∈IE , {Uα ∩F}α∈IF ). This also yields the above isomorphism. See [13, Comple-
ment 8.4] for the proof.
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Remark 3.2. As shown in the above proof, the Betti numbers with compact sup-
port of E̊ are finite. Moreover, they are uniformly bounded in terms of dimension,
a lower curvature bound, and an upper diameter bound, since the Betti numbers
of any extremal subset are uniformly bounded in terms of these constants ([10,
Theorem 1.1(2)]).

Remark 3.3. The Betti numbers without compact support of E̊ are also uniformly
bounded. Indeed, since the distance function from F is regular near it ([23, Lemma
3.1(2)]), the complement of a small metric neighborhood of F in E is a deformation

retract of E̊ by the gradient flow. This, together with the proof of the uniform
boundedness in [10, Section 5] (cf. [28, Theorem 5.2]), implies the claim.

Remark 3.4. In view of Remark 2.8, if G be an extremal subset of M , then

χ(G) =
∑

E∈E

χc(E̊) · χ(FE ∩G),

where we regard χ(FE ∩G) = 0 if FE ∩G = ∅. The proof is the same as above.

Appendix A.

In this appendix, to complete the proof of Alesker’s conjecture, we construct the
integer valued function F on the strata of the limit space asserted in Conjecture
1.2(2b). This is an unpublished result of Petrunin stated in [1, Theorem 4.6] without
proof. As before, we fix and omit the coefficient field of singular cohomology.

Theorem A.1 (Petrunin). Let Mj be a sequence of n-dimensional Alexandrov
spaces converging to a compact Alexandrov space X. Let E denote the set of primi-
tive extremal subsets in X. Passing to a subsequence, one can construct a function
F : E → Z satisfying the following properties:

(1) Let (p, r) be fiber data on X (see Definition 2.1) and let E be a primitive

extremal subset of X such that p ∈ E̊. Then we have

F (E) = lim
j→∞

χ(B̄(pj , r))

for any sequence pj ∈ Mj converging to p.

(2) Assume that there is another way of convergence Mj
GH
−→ X. Passing to a

subsequence again, one can also construct F ′ : E → Z for this convergence.
Then there exists an isometry ι : X → X such that the induced bijection
ι∗ : E → E satisfies

F = F ′ ◦ ι∗.

Remark A.2. In (1) the sufficiently large index j at which χ(B̄(pj , r)) becomes
constant depends on r and hence on p. Note that r is smaller than the distance
from p to the extremal subset E \ E̊.

Remark A.3. As in Remark 2.4, one can use open balls instead of closed balls in
the above statement and the following proof.

Remark A.4. Alesker mentioned that the function F will be independent of the
choice of the coefficient field.
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Proof. For each E ∈ E , we take fiber data (pE , rE) such that pE ∈ E̊ as in the

proof of the main theorem. Let pjE ∈ Mj be a sequence converging to pE . By the
generalization of Gromov’s Betti number theorem to Alexandrov spaces ([17], [28]),

the total Betti number of the regular fiber B̄(pjE , rE) is uniformly bounded indepen-
dent of j. Indeed, by [28, Theorem 5.2], the rank of the inclusion homomorphism

H∗(B̄(pjE , rE/2)) → H∗(B̄(pjE , rE)) is uniformly bounded in terms of dimension
and a lower curvature bound (note that the bound is independent of rE by rescal-

ing). Since the distance function from pjE is regular on B̄(pjE , rE) \B(pjE , rE/2) for

sufficiently large j, the inclusion B̄(pjE , rE/2) →֒ B̄(pjE , rE) is a homotopy equiva-
lence by Perelman’s fibration theorem ([20, Theorem 1.4.1], [21, Theorem 1.4(B)]).
Hence the total Betti number of this regular fiber is uniformly bounded indepen-
dent of j. Since the number of primitive extremal subsets is finite, after passing to
a subsequence, one can assume that χ(B̄(pjE , rE)) is constant independent of j for
any E ∈ E . We define this value to be F (E).

Let us prove (1). Let (p, r) be fiber data on X such that p ∈ E̊ and assume
that pj ∈ Mj converges to p. By Lemma 2.5, B̄(pj , r) is homotopy equivalent to

B̄(pjE , rE) for sufficiently large j (depending on r). This implies the first claim.
Let us prove (2). We define F ′ for the second convergence in the same way as

above. The isometry ι is constructed as follows. For any p ∈ X , take a sequence
pj ∈ Mj converging to p with respect to the first convergence. Passing to a sub-
sequence, one can assume that pj also converges in the second convergence. This
limit point should be ι(p). By a standard diagonal argument, one can define ι
on some countable dense subset of X . Clearly ι preserves distance. Hence there
exists a unique distance-preserving extension of ι onto X . Since X is compact, it
is surjective (see [5, Theorem 1.6.14]).

It is easy to see that F = F ′ ◦ ι∗. Indeed, if (p, r) is fiber data with p ∈ E̊,
then (ι(p), r) is also fiber data and ι(p) is contained in the main part of ι∗(E).
Moreover, if pj ∈ Mj is a sequence converging to p in the first convergence, then it
also converges to ι(p) in the second convergence. These together with the property
(1) imply the second claim. �

Remark A.5. As shown in the first paragraph of the above proof, the total Betti
number of a regular fiber is uniformly bounded in terms of dimension and a lower
curvature bound.

Remark A.6. Although we only consider the Euler characteristics of regular fibers
in the above theorem, one can actually consider their Betti numbers. Furthermore,
one can consider the Betti numbers of the intersections of regular fibers with ex-
tremal subsets of Mj , as in [1, Theorem 4.6(1)]. This is because the numbers of
extremal subsets in Mj are uniformly bounded ([1, Theorem 4.5], [10, Theorem
1.1(1)]) and Gromov’s Betti number theorem also holds for extremal subsets ([10,
Theorem 1.1(2)]).
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